Skip to main content

Advertisement

Log in

Interleukin-35 Mitigates ox-LDL-Induced Proatherogenic Effects via Modulating miRNAs Associated with Coronary Artery Disease (CAD)

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Recent emergence of miRNAs as important regulators of processes involving lesion formation and regression has highlighted miRNAs as potent therapeutic targets for the treatment of atherosclerosis. Few studies have reported the atheroprotective role of IL-35, a novel immunosuppressive and anti-inflammatory cytokine; however, miRNA-dependent regulation underlying the anti-atherosclerotic potential of IL-35 remains elusive.

Methods

THP-1 macrophages were incubated with human recombinant IL-35 (rIL-35) either in the presence or absence of ox-LDL. qRT-PCR was conducted to validate the expression levels of previously identified miRNAs including miR-197-5p, miR-4442, miR-324-3p, miR-6879-5p, and miR-6069 that were differentially expressed in peripheral blood mononuclear cells of coronary artery disease (CAD) patients vs. controls. Additionally, bioinformatic analysis was performed to predict miRNA-associated targets and their corresponding functional significance in CAD.

Results

Exogenous IL-35 significantly decreased the average area of ox-LDL-stimulated macrophages, indicating the inhibitory effect of IL-35 on lipid-laden foam cell formation. Furthermore, rIL-35 treatment alleviated the ox-LDL-mediated atherogenic effects by modulating the expression levels of aforementioned CAD-associated miRNAs in the cultured macrophages. Moreover, functional enrichment analysis of these miRNA-related targets revealed their role in the molecular processes affecting different stages of atheroslerotic plaque development, such as macrophage polarization, T cell suppression, lipoprotein metabolism, foam cell formation, and iNOS-mediated inflammation.

Conclusion

Our observations uncover the novel role of IL-35 as an epigenetic modifier as it influences the expression level of miRNAs implicated in the pathogenesis of atherosclerosis. Thus, IL-35 cytokine therapy–mediated miRNA targeting could be an effective therapeutic strategy against the development of early atheromas in asymptomatic high-risk CAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are included within the article.

Abbreviations

rIL-35:

Recombinant interleukin-35

miRNA:

MicroRNA

Ox-LDL:

Oxidized low-density lipoprotein

CAD:

Coronary artery disease

PBMCs:

Peripheral blood mononuclear cells

VSMC:

Vascular smooth muscle cell

EC:

Endothelial cell

Treg:

Regulatory T cells

References

  1. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927–46.

    PubMed  PubMed Central  Google Scholar 

  2. Mohmmad-Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour-Alitappeh M, Mirzaei Y, Arjmand MH, et al. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life. 2021;73(1):64–91.

    Article  CAS  Google Scholar 

  3. Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc). 2016;81(11):1358–70.

    Article  CAS  PubMed  Google Scholar 

  4. Egwuagu CE, Yu CR, Sun L, Wang R. Interleukin 35: critical regulator of immunity and lymphocyte-mediated diseases. Cytokine Growth Factor Rev. 2015;26(5):587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang Y, Lin YZ, Shi Y, Ji QW. IL-35: a potential target for the treatment of atherosclerosis. Pharmazie. 2013;68(10):793–5.

    CAS  PubMed  Google Scholar 

  6. Li X, Shao Y, Sha X, Fang P, Kuo YM, Andrews AJ, et al. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (histone 3 lysine 14). Arterioscler Thromb Vasc Biol. 2018;38(3):599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin Y, Huang Y, Lu Z, Luo C, Shi Y, Zeng Q, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One. 2012;7(12):e52490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tao L, Zhu J, Chen Y, Wang Q, Pan Y, Yu Q, et al. IL-35 improves Treg-mediated immune suppression in atherosclerotic mice. Exp Ther Med. 2016;12(4):2469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015;21(5):307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong Z, Hou J, Zhang Q, Zhong W, Li B, Li C, Liu Z, Yang M, Zhao P. Circulating microRNA expression profiling and bioinformatics analysis of dysregulated microRNAs of patients with coronary artery disease. Medicine (Baltimore). 2018;97(27):e11428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sawant DV, Hamilton K, Vignali DA. Interleukin-35: Expanding Its Job Profile. J Interferon Cytokine Res. 2015;35(7):499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito TK, Yokoyama M, Yoshida Y, Nojima A, Kassai H, Oishi K, et al. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis. PLoS One. 2014;9(7):e102186.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin J, Kakkar V, Lu X. The role of interleukin 35 in atherosclerosis. Curr Pharm Des. 2015;21(35):5151–9.

    Article  CAS  PubMed  Google Scholar 

  14. Brophy ML, Dong Y, Wu H, Rahman HN, Song K, Chen H. Eating the dead to keep atherosclerosis at bay. Front Cardiovasc Med. 2017;30(4):2.

    Google Scholar 

  15. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One. 2015;10(12):e0145930.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Zheng J, Dong J, Bai R, Song D, Ma X, et al. Association of miR-197-5p, a circulating biomarker for heart failure, with myocardial fibrosis and adverse cardiovascular events among patients with stage C or D heart failure. Cardiology. 2018;141(4):212–25.

    Article  CAS  PubMed  Google Scholar 

  17. Lin P, Ji HH, Li YJ, Guo SD. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, et al. Macrophage polarization in atherosclerosis. Clin Chim Acta. 2020;501:142–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, et al. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget. 2017;8(34):57693–706.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol. 2012;189(7):3439–48.

    Article  CAS  PubMed  Google Scholar 

  21. He C, Carter AB. The metabolic prospective and redox regulation of macrophage polarization. J Clin Cell Immunol. 2015;6(6):371.

    Article  PubMed  PubMed Central  Google Scholar 

  22. El Chartouni C, Schwarzfischer L, Rehli M. Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology. 2010;215(9–10):821–5.

    Article  PubMed  Google Scholar 

  23. Lund RJ, Chen Z, Scheinin J, Lahesmaa R. Early target genes of IL-12 and STAT4 signaling in th cells. J Immunol. 2004;172(11):6775–82.

    Article  CAS  PubMed  Google Scholar 

  24. Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb. 1991;11(5):1223–30.

    Article  CAS  PubMed  Google Scholar 

  25. Autieri MV. Pro- and anti-inflammatory cytokine networks in atherosclerosis. ISRN Vasc Med. 2012;2012:1–17.

    Article  Google Scholar 

  26. Xia F, Qian CR, Xun Z, Hamon Y, Sartre AM, Formisano A, et al. TCR and CD28 concomitant stimulation elicits a distinctive calcium response in naive T cells. Front Immunol. 2018;9:2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Boer OJ, Hirsch F, van der Wal AC, van der Loos CM, Das PK, Becker AE. Costimulatory molecules in human atherosclerotic plaques: an indication of antigen specific T lymphocyte activation. Atherosclerosis. 1997;133(2):227–34.

    Article  PubMed  Google Scholar 

  28. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  30. Linton MRF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. 2019 Jan 3. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

  31. Abd El-Aziz TA, Mohamed RH. LDLR, ApoB and ApoE genes polymorphisms and classical risk factors in premature coronary artery disease. Gene. 2016;590(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  32. Oppi S, Lüscher TF, Stein S. Mouse models for atherosclerosis research—which is my line? Front Cardiovasc Med. 2019;6:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Chen Z, Wang Y, Wang X, Chen L, Yuan T, et al. Several circulating miRNAs related to hyperlipidemia and atherosclerotic cardiovascular diseases. Lipids Health Dis. 2019;18(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang PD, Liu YF, Guo Y, Miao F, Yu ZG, Wang SX. Oxidized low-density lipoprotein enhances the expressions of SREBP-2 and HMGCR mRNA in macrophages derived from the monocytes of patients with acute coronary syndrome. Nan Fang Yi Ke Da Xue Xue Bao. 2009;29(5):929–32.

    PubMed  Google Scholar 

  35. Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, et al. Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol. 2016;238(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  36. Cui CJ, Li S, Li JJ. PCSK9 and its modulation. Clin Chim Acta. 2015;440:79–86.

    Article  CAS  PubMed  Google Scholar 

  37. Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation. Front Cardiovasc Med. 2021;8:639727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plakkal Ayyappan J, Paul A, Goo YH. Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep. 2016;13(6):4527–34.

    Article  PubMed  Google Scholar 

  39. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gliozzi M, Scicchitano M, Bosco F, Musolino V, Carresi C, Scarano F, et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int J Mol Sci. 2019;20(13):3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(6):998–1005.

    Article  CAS  PubMed  Google Scholar 

  42. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–55.

    Article  CAS  PubMed  Google Scholar 

  43. Giovannini C, Varì R, Scazzocchio B, Sanchez M, Santangelo C, Filesi C, et al. OxLDL induced p53-dependent apoptosis by activating p38MAPK and PKCδ signaling pathways in J774A.1 macrophage cells. J Mol Cell Biol. 2011;3(5):316–8.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan XM, Osman E, Miah S, Zadeh SN, Xu L, Forssell C, et al. p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis. 2010;210(2):392–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chen C, Wang Y, Yang S, Li H, Zhao G, Wang F, et al. MiR-320a contributes to atherogenesis by augmenting multiple risk factors and down-regulating SRF. J Cell Mol Med. 2015;19(5):970–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr. 2011;5(2):170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017;8(3):139–63.

    Article  CAS  PubMed  Google Scholar 

  48. Bandaru S, Ala C, Ekstrand M, Akula MK, Pedrelli M, Liu X, et al. Lack of RAC1 in macrophages protects against atherosclerosis. PLoS One. 2020;15(9):e0239284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mrs. Sakshi Mehta for providing her help in the basic cell culture work.

Author information

Authors and Affiliations

Authors

Contributions

SB made intellectual contributions to the analysis of data, interpretation of the results, writing of the manuscript, and designing of figures. AKY collected the data and performed the experiments with CB. AKY performed the bioinformatics analysis with inputs from SB. CB made contributions to the conception and design of the work. VD supervised the project.

Corresponding author

Correspondence to Veena Dhawan.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhansali, S., Yadav, A.K., Bakshi, C. et al. Interleukin-35 Mitigates ox-LDL-Induced Proatherogenic Effects via Modulating miRNAs Associated with Coronary Artery Disease (CAD). Cardiovasc Drugs Ther 37, 667–682 (2023). https://doi.org/10.1007/s10557-022-07335-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07335-x

Keywords

Navigation