Skip to main content
Log in

Pathophysiology, Diagnosis, and Management of the No-Reflow Phenomenon

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Successful reperfusion of an infarct-related coronary artery by primary percutaneous intervention or fibrinolysis during acute ST-elevation myocardial infarction (STEMI) does not always restore myocardial tissue perfusion, a phenomenon termed “no-reflow.” Herein we discuss the pathophysiology of this highly prevalent phenomenon and highlight the most salient aspects of its clinical diagnosis and management as well as the limitations of presently used methods. There is a great need for understanding the dynamic nature of no-reflow, as its occurrence is associated with poor cardiovascular outcomes. The no-reflow phenomenon may lend an explanation to the lack of further improvements in in-hospital mortality in STEMI patients despite decreases in door-to-balloon time. Hence, no-reflow potentially presents an important target for investigators interested in improving outcomes in STEMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013;369(10):901–9.

    CAS  PubMed  Google Scholar 

  2. Kloner RA, Ganote CE, Jennings RB. The “no-reflow”; phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54(6):1496–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kloner RA. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther. 2011;16(3–4):244–50.

    PubMed  Google Scholar 

  4. Engler RL, Schmid-Schönbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983;111(1):98–111. http://www.ncbi.nlm.nih.gov/pubmed/6837725. Accessed 1 Aug 2018.

  5. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980;62(5):945–952. http://www.ncbi.nlm.nih.gov/pubmed/7418179. Accessed 12 Apr 2018.

    CAS  PubMed  Google Scholar 

  6. Reffelmann T, Hale SL, Dow JS, Kloner RA. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation. 2003;108(23):2911–7.

    PubMed  Google Scholar 

  7. Roe MT, Ohman EM, Maas AC, et al. Shifting the open-artery hypothesis downstream: the quest for optimal reperfusion. J Am Coll Cardiol 2001;37(1):9–18. http://www.ncbi.nlm.nih.gov/pubmed/11153779. Accessed 19 June 2018.

    CAS  PubMed  Google Scholar 

  8. Rezkalla SH, Stankowski RV, Hanna J, Kloner RA. Management of no-reflow phenomenon in the catheterization laboratory. JACC Cardiovasc Interv. 2017;10(3):215–23.

    PubMed  Google Scholar 

  9. Prasad A, Stone GW, Stuckey TD, Costantini CO, Zimetbaum PJ, McLaughlin M, et al. Impact of diabetes mellitus on myocardial perfusion after primary angioplasty in patients with acute myocardial infarction. J Am Coll Cardiol. 2005;45(4):508–14.

    PubMed  Google Scholar 

  10. Timmer JR, van der Horst ICC, de Luca G, Ottervanger JP, Hoorntje JC, de Boer MJ, et al. Comparison of myocardial perfusion after successful primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction with versus without diabetes mellitus. Am J Cardiol. 2005;95(11):1375–7.

    PubMed  Google Scholar 

  11. Kloner RA. The importance of no-reflow/microvascular obstruction in the STEMI patient. Eur Heart J. 2017;38(47):3511–3.

    PubMed  Google Scholar 

  12. van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7(9):930–9.

    PubMed  Google Scholar 

  13. Kaul S. The “no reflow” phenomenon following acute myocardial infarction: mechanisms and treatment options. J Cardiol. 2014;64(2):77–85.

    PubMed  Google Scholar 

  14. Porter TR, Li S, Oster R, Deligonul U. The clinical implications of no reflow demonstrated with intravenous perfluorocarbon containing microbubbles following restoration of Thrombolysis In Myocardial Infarction (TIMI) 3 flow in patients with acute myocardial infarction. Am J Cardiol. 1998;82(10):1173–7.

    CAS  PubMed  Google Scholar 

  15. Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J, et al. Thrombolysis in Myocardial Infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation. 1987;76(1):142–54 http://www.ncbi.nlm.nih.gov/pubmed/3109764. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  16. Vogt A, von Essen R, Tebbe U, Feuerer W, Appel KF, Neuhaus KL. Impact of early perfusion status of the infarct-related artery on short-term mortality after thrombolysis for acute myocardial infarction: retrospective analysis of four German multicenter studies. J Am Coll Cardiol. 1993;21(6):1391–5 http://www.ncbi.nlm.nih.gov/pubmed/8473646. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  17. Karagounis L, Sorensen SG, Menlove RL, Moreno F, Anderson JL. Does thrombolysis in myocardial infarction (TIMI) perfusion grade 2 represent a mostly patent artery or a mostly occluded artery? Enzymatic and electrocardiographic evidence from the TEAM-2 study. Second Multicenter Thrombolysis Trial of Eminase in Acute Myocardial Infarction. J Am Coll Cardiol. 1992;19(1):1–10 http://www.ncbi.nlm.nih.gov/pubmed/1729317. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  18. Gibson CM, Cannon CP, Daley WL, Dodge Jr JT, Alexander B, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93(5):879–888. http://www.ncbi.nlm.nih.gov/pubmed/8598078. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  19. Ohara Y, Hiasa Y, Takahashi T, et al. Relation between the TIMI frame count and the degree of microvascular injury after primary coronary angioplasty in patients with acute anterior myocardial infarction. Heart. 2005;91(1):64–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibson CM, Murphy SA, Rizzo MJ, Ryan KA, Marble SJ, McCabe CH, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation. 1999;99(15):1945–50 http://www.ncbi.nlm.nih.gov/pubmed/10208996. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  21. van ‘t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation. 1998;97(23):2302–6 http://www.ncbi.nlm.nih.gov/pubmed/9639373. Accessed 18 July 2018.

    Google Scholar 

  22. Kampinga MA, Nijsten MWN, Gu YL, Dijk WA, de Smet BJGL, van den Heuvel AFM, et al. Is the myocardial blush grade scored by the operator during primary percutaneous coronary intervention of prognostic value in patients with ST-elevation myocardial infarction in routine clinical practice? Circ Cardiovasc Interv. 2010;3(3):216–23.

    PubMed  Google Scholar 

  23. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MBM, Umans VAWM, et al. Functional recovery after acute myocardial infarction. J Am Coll Cardiol. 2008;52(3):181–9.

    PubMed  Google Scholar 

  24. Sorajja P, Gersh BJ, Costantini C, McLaughlin MG, Zimetbaum P, Cox DA, et al. Combined prognostic utility of ST-segment recovery and myocardial blush after primary percutaneous coronary intervention in acute myocardial infarction. Eur Heart J. 2005;26(7):667–74.

    PubMed  Google Scholar 

  25. Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation. 2000;101(2):125–30 http://www.ncbi.nlm.nih.gov/pubmed/10637197. Accessed 1 Sept 2018.

    CAS  PubMed  Google Scholar 

  26. Gibson CM, Cannon CP, Murphy SA, Marble SJ, Barron HV, Braunwald E. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105(16):1909–13 http://www.ncbi.nlm.nih.gov/pubmed/11997276. Accessed 1 Sept 2018.

    PubMed  Google Scholar 

  27. Carrick D, Oldroyd KG, McEntegart M, Haig C, Petrie MC, Eteiba H, et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slow-reflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J Am Coll Cardiol. 2014;63(20):2088–98.

    PubMed  PubMed Central  Google Scholar 

  28. Wong DTL, Leung MCH, Richardson JD, Puri R, Bertaso AG, Williams K, et al. Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging. 2012;28(8):1971–81.

    PubMed  Google Scholar 

  29. Michael Gibson C, Pride YB, Buros JL, et al. Association of impaired thrombolysis in myocardial infarction myocardial perfusion grade with ventricular tachycardia and ventricular fibrillation following fibrinolytic therapy for ST-segment elevation myocardial infarction. 2008;51:546–51.

  30. Gibson CM, Kirtane AJ, Morrow DA, et al. Association between thrombolysis in myocardial infarction myocardial perfusion grade, biomarkers, and clinical outcomes among patients with moderate- to high-risk acute coronary syndromes: observations from the Randomized Trial to Evaluate the Relative PROTECTion against Post-PCI Microvascular Dysfunction and Post-PCI Ischemia among Antiplatelet and Antithrombotic Agents–Thrombolysis In Myocardial Infarction 30 (PROTECT-TIMI 30). Am Heart J. 2006;152(4):756–61.

    CAS  PubMed  Google Scholar 

  31. Appelbaum E, Abraham JM, Pride YB, et al. Association of Thrombolysis in Myocardial Infarction Myocardial Perfusion Grade with cardiovascular magnetic resonance measures of infarct architecture after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am Heart J. 2009;158(1):84–91.

    PubMed  Google Scholar 

  32. Wong DTL, Leung MCH, Das R, Liew GYH, Teo KSL, Chew DP, et al. Intracoronary ECG during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction predicts microvascular obstruction and infarct size. Int J Cardiol. 2013;165(1):61–6.

    PubMed  Google Scholar 

  33. Schröder R. Prognostic impact of early ST-segment resolution in acute ST-elevation myocardial infarction. Circulation. 2004;110(21):e506–10.

    PubMed  Google Scholar 

  34. van ‘t Hof AW, Liem A, de Boer MJ, Zijlstra F. Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Zwolle Myocardial infarction Study Group. Lancet (London, England). 1997;350(9078):615–619. http://www.ncbi.nlm.nih.gov/pubmed/9288043. Accessed 18 July 2018.

  35. Haager PK, Christott P, Heussen N, Lepper W, Hanrath P, Hoffmann R. Prediction of clinical outcome after mechanical revascularization in acute myocardial infarction by markers of myocardial reperfusion. J Am Coll Cardiol. 2003;41(4):532–8.

    PubMed  Google Scholar 

  36. Durante A, Camici PG. Novel insights into an “old” phenomenon: the no reflow. Int J Cardiol. 2015;187:273–80.

    PubMed  Google Scholar 

  37. Rezkalla SH. No-reflow phenomenon. Circulation. 2002;105:656–62.

    PubMed  Google Scholar 

  38. Kenner MD, Zajac EJ, Kondos GT, Dave R, Winkelmann JW, Joftus J, et al. Ability of the no-reflow phenomenon during an acute myocardial infarction to predict left ventricular dysfunction at one-month follow-up. Am J Cardiol. 1995;76(12):861–8.

    CAS  PubMed  Google Scholar 

  39. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–72 http://www.ncbi.nlm.nih.gov/pubmed/9498540. Accessed 12 Apr 2018.

    CAS  PubMed  Google Scholar 

  40. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J. 2017;38(47):3502–10.

    PubMed  Google Scholar 

  41. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–6.

    PubMed  Google Scholar 

  42. Elgendy IY, Jneid H. Microvascular obstruction in ST elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: another frontier to conquer? J Thorac Dis. 2018;10(3):1343–6.

    PubMed  PubMed Central  Google Scholar 

  43. Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM, Kugelmass AD, et al. Incidence and treatment of “no-reflow” after percutaneous coronary intervention. Circulation. 1994;89(6):2514–8 http://www.ncbi.nlm.nih.gov/pubmed/8205658. Accessed 13 Feb 2018.

    CAS  PubMed  Google Scholar 

  44. Morishima I, Sone T, Okumura K, Tsuboi H, Kondo J, Mukawa H, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36(4):1202–9 http://www.ncbi.nlm.nih.gov/pubmed/11028471. Accessed 13 Feb 2018.

    CAS  PubMed  Google Scholar 

  45. Rochitte CE, Lima JA, Bluemke DA, et al. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation. 1998;98(10):1006–14 http://www.ncbi.nlm.nih.gov/pubmed/9737521. Accessed 18 July 2018.

    CAS  PubMed  Google Scholar 

  46. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Müller V, et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201 Tl SPECT imaging. Radiology. 2004;232(1):49–57.

    PubMed  Google Scholar 

  47. Carrick D, Haig C, Ahmed N, et al. Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications. J Am Heart Assoc. 2016;5(2).

  48. Carrick D, Haig C, Ahmed N, McEntegart M, Petrie MC, Eteiba H, et al. Myocardial hemorrhage after acute reperfused ST-segment–elevation myocardial infarction. Circ Cardiovasc Imaging. 2016;9(1):e004148.

    PubMed  PubMed Central  Google Scholar 

  49. Carberry J, Couper K, Yeung J. The implementation of cardiac arrest treatment recommendations in English acute NHS trusts: a national survey. Postgrad Med J. 2017;93(1105):653–9.

    PubMed  Google Scholar 

  50. Zhao Y-J, Fu X-H, Ma X-X, et al. Intracoronary fixed dose of nitroprusside via thrombus aspiration catheter for the prevention of the no-reflow phenomenon following primary percutaneous coronary intervention in acute myocardial infarction. Exp Ther Med. 2013;6(2):479–84.

    PubMed  PubMed Central  Google Scholar 

  51. Su Q, Li L, Naing KA, Sun Y. Safety and effectiveness of nitroprusside in preventing no-reflow during percutaneous coronary intervention: a systematic review. Cell Biochem Biophys. 2014;68(1):201–6.

    CAS  PubMed  Google Scholar 

  52. Zhao S, Qi G, Tian W, Chen L, Sun Y. Effect of intracoronary nitroprusside in preventing no reflow phenomenon during primary percutaneous coronary intervention: a meta-analysis. J Interv Cardiol. 2014;27(4):356–64.

    PubMed  Google Scholar 

  53. Wang L, Cheng Z, Gu Y, Peng D. Short-term effects of verapamil and diltiazem in the treatment of no reflow phenomenon: a meta-analysis of randomized controlled trials. Biomed Res Int. 2015;2015:1–7.

    Google Scholar 

  54. Fischell TA, Haller S, Pulukurthy S, Virk IS. Nicardipine and adenosine “flush cocktail” to prevent no-reflow during rotational atherectomy. Cardiovasc Revascularization Med. 2008;9(4):224–8.

    Google Scholar 

  55. Aung Naing K, Li L, Su Q, Wu T. Adenosine and verapamil for no-reflow during primary percutaneous coronary intervention in people with acute myocardial infarction. In: Li L, editor. Cochrane Database of Systematic Reviews. Chichester: Wiley; 2013. p. CD009503.

    Google Scholar 

  56. Niccoli G, Rigattieri S, De Vita MR, et al. Open-label, randomized, placebo-controlled evaluation of intracoronary adenosine or nitroprusside after thrombus aspiration during primary percutaneous coronary intervention for the prevention of microvascular obstruction in acute myocardial infarction. JACC Cardiovasc Interv. 2013;6(6):580–9.

    PubMed  Google Scholar 

  57. Niccoli G, Spaziani C, Crea F, REOPEN-AMI Investigators. Left ventricular remodeling and 1-year clinical follow-up of the REOPEN-AMI trial. J Am Coll Cardiol. 2014;63(14):1454–5.

    PubMed  Google Scholar 

  58. Gu YL, Kampinga MA, Wieringa WG, Fokkema ML, Nijsten MW, Hillege HL, et al. Intracoronary versus intravenous administration of abciximab in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration: the comparison of intracoronary versus intravenous abciximab administration during emergency reperfusion of ST-segment elevation myocardial infarction (CICERO) trial. Circulation. 2010;122(25):2709–17.

    CAS  PubMed  Google Scholar 

  59. Thiele H, Schindler K, Friedenberger J, Eitel I, Fürnau G, Grebe E, et al. Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation. 2008;118(1):49–57.

    CAS  PubMed  Google Scholar 

  60. Rezkalla SH, Dharmashanka KC, Abdalrahman IB, Kloner RA. No-reflow phenomenon following percutaneous coronary intervention for acute myocardial infarction: incidence, outcome, and effect of pharmacologic therapy. J Interv Cardiol. 2010;23(5):429–36.

    PubMed  Google Scholar 

  61. Johnston-Cox HA, Yang D, Ravid K. Physiological implications of adenosine receptor-mediated platelet aggregation. J Cell Physiol. 2011;226(1):46–51.

    CAS  PubMed  Google Scholar 

  62. Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999;34(6):1711–20 http://www.ncbi.nlm.nih.gov/pubmed/10577561. Accessed 6 July 2018.

    CAS  PubMed  Google Scholar 

  63. Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW, AMISTAD-II Investigators. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005;45(11):1775–80.

    CAS  PubMed  Google Scholar 

  64. Gao Q, Yang B, Guo Y, Zheng F. Efficacy of adenosine in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: a PRISMA-compliant meta-analysis. Medicine (Baltimore). 2015;94(32):e1279.

    CAS  Google Scholar 

  65. Navarese EP, Buffon A, Andreotti F, Gurbel PA, Kozinski M, Kubica A, et al. Adenosine improves post-procedural coronary flow but not clinical outcomes in patients with acute coronary syndrome: a meta-analysis of randomized trials. Atherosclerosis. 2012;222(1):1–7.

    CAS  PubMed  Google Scholar 

  66. Polimeni A, De Rosa S, Sabatino J, Sorrentino S, Indolfi C. Impact of intracoronary adenosine administration during primary PCI: a meta-analysis. Int J Cardiol. 2016;203:1032–41.

    PubMed  Google Scholar 

  67. Nazir SA, Khan JN, Mahmoud IZ, et al. The REFLO-STEMI (REperfusion Facilitated by LOcal adjunctive therapy in ST-Elevation Myocardial Infarction) trial: a randomised controlled trial comparing intracoronary administration of adenosine or sodium nitroprusside with control for attenuation of MI. Effic Mech Eval. 2016;3(9).

  68. Eitel I, Wöhrle J, Suenkel H, Meissner J, Kerber S, Lauer B, et al. Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2013;61(13):1447–54.

    CAS  PubMed  Google Scholar 

  69. Gregorini L, Marco J, Kozàkovà M, et al. α-Adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation. 1999;99(4):482–90.

    CAS  PubMed  Google Scholar 

  70. McCartney PJ, Eteiba H, Maznyczka AM, et al. Effect of low-dose intracoronary alteplase during primary percutaneous coronary intervention on microvascular obstruction in patients with acute myocardial infarction. JAMA. 2019;321(1):56–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stone GW, Maehara A, Witzenbichler B, et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction. JAMA. 2012;307(17):1817.

    CAS  PubMed  Google Scholar 

  72. Elgendy AY, Elgendy IY, Mahmoud AN, Bavry AA. Long-term outcomes with aspiration thrombectomy for patients undergoing primary percutaneous coronary intervention: a meta-analysis of randomized trials. Clin Cardiol. 2017;40(8):534–41.

    PubMed  PubMed Central  Google Scholar 

  73. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39(2):119–77.

    PubMed  Google Scholar 

  74. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–425.

    PubMed  Google Scholar 

  75. Levine GN, Eric Bates CR, Chair V, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Vol 67; 2016.

  76. De Maria GL, Alkhalil M, Borlotti A, et al. Index of microcirculatory resistance-guided therapy with pressure-controlled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: the Oxford Acute Myocardial Infarction – Pressure-controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study). EuroIntervention. 2018;14(3):e352–9.

    PubMed  Google Scholar 

  77. Kunadian B, Dunning J, Vijayalakshmi K, Thornley AR, de Belder MA. Meta-analysis of randomized trials comparing anti-embolic devices with standard PCI for improving myocardial reperfusion in patients with acute myocardial infarction. Catheter Cardiovasc Interv. 2007;69(4):488–96.

    PubMed  Google Scholar 

  78. Hibi K, Kozuma K, Sonoda S, Endo T, Tanaka H, Kyono H, et al. A randomized study of distal filter protection versus conventional treatment during percutaneous coronary intervention in patients with attenuated plaque identified by intravascular ultrasound. JACC Cardiovasc Interv. 2018;3758:1545–55.

    Google Scholar 

  79. Sobieraj DM, White CM, Kluger J, Tongbram V, Colby J, Chen WT, et al. Systematic review: comparative effectiveness of adjunctive devices in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention of native vessels. BMC Cardiovasc Disord. 2011;11(1):74.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Allencherril.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allencherril, J., Jneid, H., Atar, D. et al. Pathophysiology, Diagnosis, and Management of the No-Reflow Phenomenon. Cardiovasc Drugs Ther 33, 589–597 (2019). https://doi.org/10.1007/s10557-019-06901-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06901-0

Keywords

Navigation