Skip to main content
Log in

Electrocardiographic Predictors of Torsadogenic Risk During Dofetilide or Sotalol Initiation: Utility of a Novel T Wave Analysis Program

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Initiation of class III anti-arrhythmic medications requires telemetric monitoring for ventricular arrhythmias and QT prolongation to reduce the risk of torsades de pointes (TdP). Heart rate-corrected QT interval (QTc) is an indicator of risk, however it is imperfect, and subtle abnormalities of repolarization have been linked with arrhythmogenesis.

Purpose

Identification of electrocardiographic predictors of torsadogenic risk through the application of a novel T wave analysis tool.

Methods

Among all patients admitted to Mayo Clinic for initiation of dofetilide or sotalol, we identified 13 cases who developed drug-induced TdP and 26 age and sex matched controls that did not develop TdP. The immediate pre-TdP ECG of those with TdP was compared to the last ECG performed prior to hospital discharge in controls using a novel T wave program that quantified subtle changes in T wave morphology.

Results

The QTc and 12 T wave parameters successfully distinguished TdP cases from controls. The top performing parameters were the QTc in lead V3 (mean case vs control 480 vs 420 msec, p < 0.001, r = 0.72) and T wave right slope in lead I (mean case vs control −840.29 vs −1668.71 mV/s, p = 0.002, r = 0.45). The addition of T wave right slope to QTc improved prediction accuracy from 79 to 88 %.

Conclusion

Our data demonstrate that, in addition to QTc, the T wave right slope is correlated strongly with TdP risk. This suggests that a computer-based repolarization measurement tool that integrates additional data beyond the QTc may identify patients with the greatest torsadogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zimetbaum P. Antiarrhythmic drug therapy for atrial fibrillation. Circulation. 2012;125(2):381–9.

    Article  PubMed  Google Scholar 

  2. Drew BJ, Ackerman MJ, Funk M, Gibler WB, Kligfield P, Menon V, et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol. 2010;55(9):934–47.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lehmann MH, Hardy S, Archibald D, Quart B, MacNeil DJ. Sex difference in risk of torsade de pointes with d, l-sotalol. Circulation. 1996;94(10):2535–41.

    Article  CAS  PubMed  Google Scholar 

  4. Soyka LF, Wirtz C, Spangenberg RB. Clinical safety profile of sotalol in patients with arrhythmias. Am J Cardiol. 1990;65(2):74A–81. discussion 2A-3A.

    Article  CAS  PubMed  Google Scholar 

  5. Pacifico A, Hohnloser SH, Williams JH, Tao B, Saksena S, Henry PD, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol. d, l-sotalol implantable cardioverter-defibrillator study group. N Engl J Med. 1999;340(24):1855–62.

    Article  CAS  PubMed  Google Scholar 

  6. Pedersen HS, Elming H, Seibaek M, Burchardt H, Brendorp B, Torp-Pedersen C, et al. Risk factors and predictors of Torsade de pointes ventricular tachycardia in patients with left ventricular systolic dysfunction receiving Dofetilide. Am J Cardiol. 2007;100(5):876–80.

    Article  CAS  PubMed  Google Scholar 

  7. Norgaard BL, Wachtell K, Christensen PD, Madsen B, Johansen JB, Christiansen EH, et al. Efficacy and safety of intravenously administered dofetilide in acute termination of atrial fibrillation and flutter: a multicenter, randomized, double-blind, placebo-controlled trial. Danish Dofetilide in Atrial Fibrillation and Flutter Study Group. Am Heart J. 1999;137(6):1062–9.

    Article  CAS  PubMed  Google Scholar 

  8. Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. J Cardiovasc Electrophysiol. 2001;12(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  9. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.

    Article  CAS  PubMed  Google Scholar 

  10. Brennan T, Fink M, Stokeley D, Rodriguez B, Tarassenko L, editors. Modelling effects of sotalol on T-wave morphology. Comput Cardiol. 2007;2007: IEEE.

  11. Houltz B, Darpo B, Edvardsson N, Blomstrom P, Brachmann J, Crijns HJ, et al. Electrocardiographic and clinical predictors of torsades de pointes induced by almokalant infusion in patients with chronic atrial fibrillation or flutter: a prospective study. Pacing Clin Electrophysiol. 1998;21(5):1044–57.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson I, Carlsson L, Duker G. Beat-by-beat QT interval variability, but not QT prolongation per se, predicts drug-induced torsades de pointes in the anaesthetised methoxamine-sensitized rabbit. J Pharmacol Toxicol Methods. 2011;63(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  13. Thomsen MB, Verduyn SC, Stengl M, Beekman JD, de Pater G, van Opstal J, et al. Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation. 2004;110(16):2453–9.

    Article  PubMed  Google Scholar 

  14. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm. 2005;2(7):758–72.

    Article  PubMed  Google Scholar 

  15. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17(1):43–51.

    Article  PubMed  Google Scholar 

  16. Clifford GD, Azuaje F, McSharry PE. Advanced methods and tools for ECG data analysis. Artech House; 2006.

  17. Lin C, Mailhes C, Tourneret J-Y. P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler. IEEE Trans Biomed Eng. 2010;57(12):2840–9.

    Article  PubMed  Google Scholar 

  18. Hondeghem LM. Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol. 2006;17(3):337–40.

    Article  PubMed  Google Scholar 

  19. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Thomsen MB, Volders PG, Beekman JD, Matz J, Vos MA. Beat-to-Beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced torsades de pointes. J Am Coll Cardiol. 2006;48(6):1268–76.

    Article  CAS  PubMed  Google Scholar 

  21. Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am Heart J. 1986;111(6):1088–93.

    Article  CAS  PubMed  Google Scholar 

  22. Woosley RL, Chen Y, Freiman JP, Gillis RA. Mechanism of the cardiotoxic actions of terfenadine. JAMA. 1993;269(12):1532–6.

    Article  CAS  PubMed  Google Scholar 

  23. De Bruin ML, Langendijk PN, Koopmans RP, Wilde AA, Leufkens HG, Hoes AW. In-hospital cardiac arrest is associated with use of non-antiarrhythmic QTc-prolonging drugs. Br J Clin Pharmacol. 2007;63(2):216–23.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Couderc JP, Vaglio M, Xia X, McNitt S, Wicker P, Sarapa N, et al. Impaired T-amplitude adaptation to heart rate characterizes I(Kr) inhibition in the congenital and acquired forms of the long QT syndrome. J Cardiovasc Electrophysiol. 2007;18(12):1299–305.

    Article  PubMed  Google Scholar 

  25. Graff C, Andersen MP, Xue JQ, Hardahl TB, Kanters JK, Toft E, et al. Identifying drug-induced repolarization abnormalities from distinct ECG patterns in congenital long QT syndrome: a study of sotalol effects on T-wave morphology. Drug Saf. 2009;32(7):599–611.

    Article  CAS  PubMed  Google Scholar 

  26. Couderc JP, Xia X, Peterson DR, McNitt S, Zhao H, Polonsky S, et al. T-wave morphology abnormalities in benign, potent, and arrhythmogenic I(kr) inhibition. Heart Rhythm. 2011;8(7):1036–43.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation. 1995;92(10):2929–34.

    Article  CAS  PubMed  Google Scholar 

  28. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation. 1998;98(18):1928–36.

    Article  CAS  PubMed  Google Scholar 

  29. Bhuiyan TA, Graff C, Kanters JK, Thomsen MB, Struijk JJ, editors. Flattening of the electrocardiographic T-wave is a sign of proarrhythmic risk and a reflection of action potential triangulation. Computing in Cardiology Conference (CinC), 2013; 2013: IEEE.

  30. Nielsen J, Graff C, Hardahl T, Andersen MP, Kristoffersen J, Struijk JJ, et al. Sertindole causes distinct electrocardiographic T-wave morphology changes. Eur Neuropsychopharmacol. 2009;19(10):702–7.

    Article  CAS  PubMed  Google Scholar 

  31. Letsas KP, Weber R, Astheimer K, Kalusche D, Arentz T. Tpeak-Tend interval and Tpeak-Tend/QT ratio as markers of ventricular tachycardia inducibility in subjects with Brugada ECG phenotype. Europace. 2010;12(2):271–4.

    Article  PubMed  Google Scholar 

  32. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41(6):567–74.

    Article  PubMed  Google Scholar 

  33. Topilski I, Rogowski O, Rosso R, Justo D, Copperman Y, Glikson M, et al. The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. J Am Coll Cardiol. 2007;49(3):320–8.

    Article  PubMed  Google Scholar 

  34. Shimizu M, Ino H, Okeie K, Yamaguchi M, Nagata M, Hayashi K, et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol. 2002;25(7):335–9.

    Article  PubMed  Google Scholar 

  35. Haarmark C, Hansen PR, Vedel-Larsen E, Pedersen SH, Graff C, Andersen MP, et al. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Electrocardiol. 2009;42(6):555–60.

    Article  PubMed  Google Scholar 

  36. Dillon JJ, DeSimone CV, Sapir Y, Somers VK, Dugan JL, Bruce CJ, et al. Noninvasive potassium determination using a mathematically processed ECG: proof of concept for a novel “blood-less, blood test”. J Electrocardiol. 2015;48(1):12–8.

    Article  PubMed  Google Scholar 

  37. Somberg JC, Preston RA, Ranade V, Cvetanovic I, Molnar J. Gender differences in cardiac repolarization following intravenous sotalol administration. J Cardiovasc Pharmacol Ther. 2012;17(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann MH, Timothy KW, Frankovich D, Fromm BS, Keating M, Locati EH, et al. Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J Am Coll Cardiol. 1997;29(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  39. Choy AM, Darbar D, Dell’Orto S, Roden DM. Exaggerated QT prolongation after cardioversion of atrial fibrillation. J Am Coll Cardiol. 1999;34(2):396–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding Sources

C.V.D. is supported by an NIH T32 Training Grant HL 007111.

V.K. is supported by funding from Czech Science Foundation GACR #P103/11/P106.

Disclosures

Dr Ackerman is a consultant for: Boston Scientific, Medtronic, St. Jude Medical, Transgenomic. Royalties and Intellectual Property from Transgenomic. Dr Asirvatham is a consultant for Abiomed, Atricure, Biotronik, Biosense Webster, Boston Scientific, Medtronic, Spectranetics, St Jude Medical, Sanofi-Aventis, Wolters Kluwer, and Elsevier. The other authors report no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Noseworthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 39 kb)

Supplementary Figure 1

(DOCX 23 kb)

Supplementary Figure 2

(DOCX 38 kb)

Supplementary Figure 3

(DOCX 81 kb)

Supplementary Figure 4

(DOCX 115 kb)

Supplementary Figure 5

(DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugrue, A., Kremen, V., Qiang, B. et al. Electrocardiographic Predictors of Torsadogenic Risk During Dofetilide or Sotalol Initiation: Utility of a Novel T Wave Analysis Program. Cardiovasc Drugs Ther 29, 433–441 (2015). https://doi.org/10.1007/s10557-015-6619-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6619-0

Keywords

Navigation