Skip to main content
Log in

Prospects of earthworm coelomic fluid as a potential therapeutic agent to treat cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid’s anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Mattiuzzi, C., & Lippi, G. (2019). Current cancer epidemiology. Journal of epidemiology and global health, 9(4), 217.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L., & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., De Falco, V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal, J. K., Dewanjee, S., Vallamkondu, J., & Pérez de la Lastra, J. M. (2022). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367–1401.

    Article  Google Scholar 

  4. Davis, M. E. (2018). Epidemiology and overview of gliomas. In Seminars in oncology nursing (pp. 420–429). Elsevier.

    Google Scholar 

  5. Zhou, Y., Xing, X., Zhou, J., Jiang, H., Cen, P., Jin, C., Zhong, Y., Zhou, R., Wang, J., & Tian, M. (2023). Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Reports, 6(5), e1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng, Z., Gao, S., Xiao, X., Yin, N., Ma, S., Li, W., & Li, Y. (2019). The effect of earthworm extract on mice S180 tumor growth and apoptosis. Biomedicine & Pharmacotherapy, 115, 108979.

    Article  CAS  Google Scholar 

  7. Liu, Y. P., Zheng, C. C., Huang, Y. N., He, M. L., Xu, W. W., & Li, B. (2021). Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (2020), 2(3), 315–340.

    CAS  PubMed  Google Scholar 

  8. Hashem, S., Ali, T. A., Akhtar, S., Nisar, S., Sageena, G., Ali, S., Al-Mannai, S., Therachiyil, L., Mir, R., & Elfaki, I. (2022). Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomedicine & Pharmacotherapy, 150, 113054.

    Article  CAS  Google Scholar 

  9. Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural products and bioprospecting, 11, 5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin, S. R., Chang, C. H., Hsu, C. F., Tsai, M. J., Cheng, H., Leong, M. K., Sung, P. J., Chen, J. C., & Weng, C. F. (2020). Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. British Journal of Pharmacology, 177(6), 1409–1423.

    Article  CAS  PubMed  Google Scholar 

  11. Barreca, M., Spanò, V., Montalbano, A., Cueto, M., Díaz Marrero, A. R., Deniz, I., Erdoğan, A., Lukić Bilela, L., Moulin, C., Taffin-de-Givenchy, E., Spriano, F., Perale, G., Mehiri, M., Rotter, A., Thomas, P., Barraja, P., Gaudêncio, S. P., & Bertoni, F. (2020). Marine anticancer agents: An overview with a particular focus on their chemical classes. Marine Drugs, 18(12), 619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baindara, P., & Mandal, S. M. (2020). Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie, 177, 164–189.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, D., Ruan, Z., Zhang, R., Wang, X., Wang, R., & Tang, Z. (2021). Effect of earthworm on wound healing: A systematic review and meta-analysis. Frontiers in Pharmacology, 12, 691742. https://doi.org/10.3389/fphar.2021.691742

    Article  PubMed  PubMed Central  Google Scholar 

  14. Augustine, D., Rao, R. S., Anbu, J., & Murthy, K. (2018). Anticancer prospects of earthworm extracts: A systematic review of in vitro and in vivo studies. Pharmacognosy Reviews, 12(23), 46–55.

    Article  CAS  Google Scholar 

  15. Mustafa, R. G., Saiqa, A., Domínguez, J., Jamil, M., Manzoor, S., Wazir, S., Shaheen, B., Parveen, A., Khan, R., & Ali, S. (2022). Therapeutic values of earthworm species extract from Azad Kashmir as anticoagulant, antibacterial, and antioxidant agents. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 1–20. https://doi.org/10.1155/2022/6949117

    Article  Google Scholar 

  16. He, M., Xie, W.-Q., Cheng, G., Li, W.-P., Yu, D.-J., Jin, H.-F., Deng, Z.-H., & Li, Y.-S. (2021). The therapeutic effects of earthworm extract on deep second-degree burn wound healing. Annals of Palliative Medicine, 10(3), 2869–2879.

    Article  PubMed  Google Scholar 

  17. Samatra, D. P. G. P., Sukrama, G. B. M. T., Dewi, I. D. M., Praja, N. W. S., & Nurmansyah, R. K. (2017). Extract of earthworms (Lumbricus rubellus) reduced malondialdehyde and 8-hydroxy-deoxyguanosine level in male Wistar rats infected by salmonella typhi. Biomedical and Pharmacology Journal, 10(4), 1765–1771.

    Article  Google Scholar 

  18. Wasunan, P., Maneewong, C., Daengprok, W., & Thirabunyanon, M. (2022). Bioactive earthworm peptides produced by novel protease-producing Bacillus velezensis PM 35 and its bioactivities on liver cancer cell death via apoptosis, antioxidant activity, protection against oxidative stress, and immune cell activation. Frontiers in Microbiology, 13, 892945. https://doi.org/10.3389/fmicb.2022.892945

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prem-U-Domkit, K., Muangman, T., Klungsupya, P., Chantsavang, S., & Kubera, A. (2017). Bioactivities of crude mucus proteins from Eudrilus eugeniae (African night crawler) and Perionyx excavatus (Blue worm). European Review for Medical and Pharmacological Sciences, 21(2), 361–368.

    CAS  PubMed  Google Scholar 

  20. Ečimović, S., Vrandečić, K., Kujavec, M., Žulj, M., Ćosić, J., & Velki, M. (2021). Antifungal activity of earthworm coelomic fluid obtained from Eisenia andrei, Dendrobaena veneta and Allolobophora chlorotica on six species of phytopathogenic fungi. Environments, 8(10), 102.

    Article  Google Scholar 

  21. Fiołka, M. J., Czaplewska, P., Macur, K., Buchwald, T., Kutkowska, J., Paduch, R., Kaczyński, Z., Wydrych, J., & Urbanik-Sypniewska, T. (2019). Anti-Candida albicans effect of the protein-carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS One, 14(3), e0212869.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fiołka, M. J., Mieszawska, S., Czaplewska, P., Szymańska, A., Stępnik, K., Sofińska-Chmiel, W., Buchwald, T., & Lewtak, K. (2020). Candida albicans cell wall as a target of action for the protein–carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Scientific Reports, 10(1), 16352.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shafi, F. A. A., & Faleh, N. (2019). Anticancer activity of earthworm powder (Lumbricus terrestris) against MCF-7 and PC-3 cancer cell lines. Journal of Gastrointestinal Cancer, 50, 919–925.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, C., Chen, X., Pan, Y., Liang, H., Song, S., & Ji, A. (2017). Antitumor studies of earthworm fibrinolytic enzyme component A from Eisenia foetida on breast cancer cell line MCF-7. Indian Journal of Pharmaceutical Sciences, 79(3), 361–368.

    Article  CAS  Google Scholar 

  25. Kauschke, E., Mohrig, W., & Cooper, E. L. (2007). Coelomic fluid proteins as basic components of innate immunity in earthworms. European Journal of Soil Biology, 43, S110–S115.

    Article  CAS  Google Scholar 

  26. Dewi, N. W. S., & Mahendra, A. N. (2020). The in-vivo anti-inflammatory effect of red earthworm (Lumbricus rubellus) ethanolic extract from organic farmland in Bali, Indonesia. Bali Medical Journal, 9(3), 652–655.

    Article  Google Scholar 

  27. Rudrammaji, L., Dinesh, M., & Sonole, V. G. (2015). Cytotoxic effect of coelomic fluid of earthworm Eudrilus eugeniae. Biomedical and Pharmacology Journal, 1(2), 433–436.

    Google Scholar 

  28. Verma, M. K., Xavier, F., Verma, Y. K., & Sobha, K. (2013). Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma. Asian Pacific Journal of Tropical Biomedicine, 3(11), 896–901.

    Article  CAS  PubMed Central  Google Scholar 

  29. Rochfort, S., Wyatt, M. A., Liebeke, M., Southam, A. D., Viant, M. R., & Bundy, J. G. (2017). Aromatic metabolites from the coelomic fluid of Eisenia earthworm species. European journal of soil biology, 78, 17–19.

    Article  CAS  Google Scholar 

  30. Griffith, C. M., Williams, P. B., Tinoco, L. W., Dinges, M. M., Wang, Y., & Larive, C. K. (2017). 1H NMR metabolic profiling of earthworm (Eisenia fetida) coelomic fluid, coelomocytes, and tissue: Identification of a new metabolite-malylglutamate. Journal of Proteome Research, 16(9), 3407–3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dajem, S. B., Ali, S. B., Abdelrady, O. G., Salahaldin, N. M., Soliman, A. M., Kamal, Y. M., Abdelazim, A. Y., Mohamed, A. F., Morsy, K., & Mohamed, A. S. (2020). Allolobophora caliginosa coelomic fluid ameliorates gentamicin-induced hepatorenal toxicity in rats. Asian Pacific Journal of Tropical Biomedicine, 10(9), 411.

    Article  CAS  Google Scholar 

  32. Fiołka, M. J., Lewtak, K., Rzymowska, J., Grzywnowicz, K., Hułas-Stasiak, M., Sofińska-Chmiel, W., & Skrzypiec, K. (2013). Antifungal and anticancer effects of a polysaccharide–protein complex from the gut bacterium Raoultella ornithinolytica isolated from the earthworm Dendrobaena veneta. Pathogens and disease, 69(1), 49–61.

    Google Scholar 

  33. Budayatin, W., Wahyuni, J., & Dafik, D. (2021). Antibacterial effects of Pheretima javanica extract and bioactive chemical analysis using gas chromatography mass spectrum. Journal of Physics: Conference Series, 1751(1), 012055.

    CAS  Google Scholar 

  34. Hussain, M., Liaqat, I., Ali, N. M., Arshad, N., Hanif, U., Sajjad, S., Sardar, A. A., Awan, U. F., Khan, F. S., & Slahuddin. (2021). Antibacterial and bacteriostatic potential of coelomic fluid and body paste of Pheretima posthuma (Vaillant, 1868) (Clitellata, Megascolecidae) against ampicillin resistant clinical bacterial isolates. Brazilian Journal of Biology, 83, e247016.

    Article  CAS  Google Scholar 

  35. Hussain, M., Liaqat, I., Hanif, U., Sultan, A., Ara, C., Aftab, N., Urooj, B., & A. (2022). Medicinal perspective of antibacterial bioactive agents in earthworms (Clitellata, Annelida): A comprehensive review. Journal of Oleo Science, 71(4), 563–573.

    Article  CAS  PubMed  Google Scholar 

  36. Sadek, S. A., Sayed, M. G., Fahmy, S. R., & Soliman, A. M. (2022). A coelomic fluid of Allolobophora caliginosa as novel prospects for medicinal antioxidants, anti-inflammatory, antiproliferative, analgesics, and antipyretics. Biointerface Research in Applied Chemistry, 13(3), 1–20.

    Google Scholar 

  37. Augustine Mds, D., Rao, R., Anbu, J., & Murthy, K. (2018). Anti-proliferative activity of earthworm coelomic fluid using oral squamous carcinoma KB 3-1 cells: An in vitro study with serine protease analysis. Pharmacognosy Magazine, 14, 528.

    Article  Google Scholar 

  38. Jaabir, M., Shamsheerali, L., Yasar, M., & Kumar, S. S. (2011). Evaluation of the cell-free coelomic fluid of the earthworm Eudrilus euginiae to induce apoptosis in SiHa cell line. Journal of Pharmacy Research, 4(10), 3417–3420.

    CAS  Google Scholar 

  39. Yanqin, L., Yan, S., Zhenjun, S., Shijie, L., Chong, W., Yan, L., & Yuhong, G. (2007). Coelomic fluid of the earthworm Eisenia fetida induces apoptosis of HeLa cells in vitro. European journal of soil biology, 43, S143–S148.

    Article  Google Scholar 

  40. Hua, Z., Wang, Y.-H., Cao, H.-W., Pu, L.-J., & Cui, Y.-D. (2011). Purification of a protein from coelomic fluid of the earthworm Eisenia foetida and evaluation of its hemolytic, antibacterial, and antitumor activities. Pharmaceutical Biology, 49(3), 269–275.

    Article  CAS  PubMed  Google Scholar 

  41. Czerwonka, A., Fiołka, M. J., Jędrzejewska, K., Jankowska, E., Zając, A., & Rzeski, W. (2020). Pro-apoptotic action of protein-carbohydrate fraction isolated from coelomic fluid of the earthworm Dendrobaena veneta against human colon adenocarcinoma cells. Biomedicine & Pharmacotherapy, 126, 110035.

    Article  CAS  Google Scholar 

  42. Patil, S. R., & Biradar, P. M. (2020). Evaluation of antitumor activities of different epigeic earthworms. Journal of Applied Biology and Biotechnology, 8(4), 52–57.

    CAS  Google Scholar 

  43. Permana, S., Putri Fityanti, R., Norahmawati, E., Iskandar, A., Anggraini Mulyadi, E. D., & Tri Endharti, A. (2020). Coelomic fluid of Eisenia fetida ameliorates cetuximab to reduce K-Ras and vimentin expression through promoting rUNX3 in an AOM/DSS-induced colitis associated colon cancer. Evidence-Based Complementary and Alternative Medicine, 2020, 1–14. https://doi.org/10.1155/2020/9418520

    Article  Google Scholar 

  44. Berr, A. L., Wiese, K., dos Santos, G., Koch, C. M., Anekalla, K. R., Kidd, M., Davis, J. M., Cheng, Y., Hu, Y.-S., & Ridge, K. M. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene, 42(25), 2074–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Z., Fang, Z., & Ma, J. (2021). Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomedicine & Pharmacotherapy, 133, 111068.

    Article  CAS  Google Scholar 

  46. Huang, L., Guo, Z., Wang, F., & Fu, L. (2021). KRAS mutation: From undruggable to druggable in cancer. Signal Transduction and Targeted Therapy, 6(1), 386.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Permana, S., Hadi, R. P., Norahmawati, E., & Endharti, A. T. (2019). Coelomic fluid of Lumbricus rubellus enhances anti-prolioniferative effect of 5-fluorouracil by modulating focal adhesion kinase express and IL-1β of colorectal cancer in mice. Journal of Applied Pharmaceutical Science, 9(8), 041–046.

    Article  CAS  Google Scholar 

  48. Endharti, A. T., Purnamasari, Y., Primasari, R., Poeranto, S., & Permana, S. (2019). Coelomic fluid of Lumbricus rubellus synergistically enhances cytotoxic effect of 5-fluorouracil through modulation of focal adhesion kinase and P21 in HT-29 cancer cell line. The Scientific World Journal, 2019, 1–9. https://doi.org/10.1155/2019/5632859

    Article  CAS  Google Scholar 

  49. Fiołka, M. J., Rzymowska, J., Bilska, S., Lewtak, K., Dmoszyńska-Graniczka, M., Grzywnowicz, K., Kaźmierski, W., & Urbanik-Sypniewska, T. (2019). Antitumor activity and apoptotic action of coelomic fluid from the earthworm Dendrobaena veneta against A549 human lung cancer cells. Apmis, 127(6), 435–448.

    Article  PubMed  Google Scholar 

  50. Shakor, A.-B. A., Czuryło, E. A., & Sobota, A. (2003). Lysenin, a unique sphingomyelin-binding protein. FEBS Letters, 542(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  51. Basilio-Cortes, U. A., Tzintzun-Camacho, O., Grimaldo-Juárez, O., Durán-Hernández, D., Suarez-Vargas, A., Durán, C. C., Salazar-Navarro, A., González-Anguiano, L. A., & González-Mendoza, D. (2023). Impact of temperature on the bioactive compound content of aqueous extracts of Humulus lupulus L. with different alpha and beta acid content: A new potential antifungal alternative. Microbiology Research, 14(1), 205–217.

    Article  CAS  Google Scholar 

  52. Liu, J., Liu, Y., & Wang, X. (2023). Effects of bioactive compounds and pharmacological activities in medicinal fruits and vegetables by thermal processing. Journal of Future Foods, 3(3), 252–262.

    Article  CAS  Google Scholar 

  53. Tembo, D. T., Holmes, M. J., & Marshall, L. J. (2017). Effect of thermal treatment and storage on bioactive compounds, organic acids and antioxidant activity of baobab fruit (Adansonia digitata) pulp from Malawi. Journal of Food Composition and Analysis, 58, 40–51.

    Article  CAS  Google Scholar 

  54. Augustine, D., Rao, R. S., Anbu, J., & Murthy, K. C. (2019). In vitro cytotoxic and apoptotic induction effect of earthworm coelomic fluid of Eudrilus eugeniae, Eisenia foetida, and Perionyx excavatus on human oral squamous cell carcinoma-9 cell line. Toxicology reports, 6, 347–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Augustine, D., Rao, R. S., Anbu, J., & Murthy, K. C. (2017). In vitro antiproliferative effect of earthworm coelomic fluid of Eudrilus eugeniae, Eisenia foetida, and Perionyx excavatus on squamous cell carcinoma-9 cell line: A pilot study. Pharmacognosy research, 9(Suppl 1), S61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vidya, N., Dinesh, M., Ananda, S., & Kale, R. D. (2016). Cytotoxic potential of Eudrilus eugeniae coelomcyte culture supernatant against tumor cells. International Journal of Science and Research, 6, 202–205.

    Google Scholar 

  57. Dinesh, M., Sridhar, S., Chandana, P., Pai, V., Geetha, K., & Hegdge, R. N. (2013). Anticancer potentials of peptides of coelomic fluid of earthworm Eudrilus eugeniae. Biosciences Biotechnology Research Asia, 10(2), 601–606.

    Article  CAS  Google Scholar 

  58. Rybicka, M., Czaplewska, P., Rzymowska, J., Sofińska-Chmiel, W., Wójcik-Mieszawska, S., Lewtak, K., Węgrzyn, K., Jurczak, P., Szpiech, A., & Nowak, J. (2022). Novel Venetin-1 nanoparticle from earthworm coelomic fluid as a promising agent for the treatment of non-small cell lung cancer. Scientific Reports, 12(1), 18497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Czaplewska, P., Bogucka, A., Macur, K., Rybicka, M., Rychłowski, M., & Fiołka, M. J. (2023). Proteomic response of A549 lung cancer cell line to protein-polysaccharide complex Venetin-1 isolated from earthworm coelomic fluid. Frontiers in Molecular Biosciences, 10, 1128320. https://doi.org/10.3389/fmolb.2023.1128320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shehadi, I. A., Rashdan, H. R. M., & Abdelmonsef, A. H. (2020). Homology modeling and virtual screening studies of antigen MLAA-42 protein: Identification of novel drug candidates against leukemia-an in silico approach. Computational and Mathematical Methods in Medicine, 2020, 8196147.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Colone, M., Calcabrini, A., & Stringaro, A. (2020). Drug delivery systems of natural products in oncology. Molecules, 25(19), 4560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Farouk, A. E., Fahmy, S. R., Soliman, A. M., Ibrahim, S. A., & Sadek, S. A. (2023). A nano-liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnology, 23(1), 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raza, F., Zafar, H., Khan, M. W., Ullah, A., Khan, A. U., Baseer, A., Fareed, R., & Sohail, M. (2022). Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Materials Advances, 3(5), 2268–2290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number ISP23-101. The author, MS, acknowledges IIT (BHU) Varanasi for providing the technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manish Srivastava or Marta Fiołka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Institutional Review Board Statement

Not Applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, S., Hussain, A., Almalki, A.H. et al. Prospects of earthworm coelomic fluid as a potential therapeutic agent to treat cancer. Cancer Metastasis Rev (2023). https://doi.org/10.1007/s10555-023-10148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-023-10148-5

Keywords

Navigation