Skip to main content

Advertisement

Log in

Metformin: review of epidemiology and mechanisms of action in pancreatic cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654

    Article  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66(1), 7–30. https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  3. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155

    Article  CAS  PubMed  Google Scholar 

  4. Albini, A., DeCensi, A., Cavalli, F., & Costa, A. (2016). Cancer prevention and interception: A new era for chemopreventive approaches. Clinical Cancer Research, 22(17), 4322–4327.

    Article  CAS  PubMed  Google Scholar 

  5. Meyskens, F. L., Mukhtar, H., Rock, C. L., Cuzick, J., Kensler, T. W., Yang, C. S., Ramsey, S. D., Lippman, S. M., & Alberts, D. S. (2016). Cancer prevention: Obstacles, challenges, and the road ahead. Journal of the National Cancer Institute, 108(2), djv309. https://doi.org/10.1093/jnci/djv309

    Article  PubMed  Google Scholar 

  6. Maitra, A., Fukushima, N., Takaori, K., & Hruban, R. H. (2005). Precursors to invasive pancreatic cancer. Advances in Anatomic Pathology, 12(2), 81–91.

    Article  PubMed  Google Scholar 

  7. Eibl, G., & Rozengurt, E. (2019). KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Seminars in Cancer Biology, 54, 50–62. https://doi.org/10.1016/j.semcancer.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Hingorani, S. R., Petricoin, E. F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., Ross, S., Conrads, T. P., Veenstra, T. D., Hitt, B. A., Kawaguchi, Y., Johann, D., Liotta, L. A., Crawford, H. C., Putt, M. E., Jacks, T., Wright, C. V., Hruban, R. H., Lowy, A. M., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.

    Article  CAS  PubMed  Google Scholar 

  9. Hingorani, S. R., Wang, L., Multani, A. S., Combs, C., Deramaudt, T. B., Hruban, R. H., Rustgi, A. K., Chang, S., & Tuveson, D. A. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7(5), 469–483. https://doi.org/10.1016/j.ccr.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  10. Ying, H., Dey, P., Yao, W., Kimmelman, A. C., Draetta, G. F., Maitra, A., & DePinho, R. A. (2016). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 30(4), 355–385. https://doi.org/10.1101/gad.275776.115

    Article  CAS  Google Scholar 

  11. Collins, M. A., Bednar, F., Zhang, Y., Brisset, J.-C., Galbán, S., Galbán, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & Pasca di Magliano, M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122(2), 639–653. https://doi.org/10.1172/JCI59227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arslan, A. A., Helzlsouer, K. J., Kooperberg, C., Shu, X.-O., Steplowski, E., Bueno-de-Mesquita, H. B., Fuchs, C. S., Gross, M. D., Jacobs, E. J., LaCroix, A. Z., Petersen, G. M., Stolzenberg-Solomon, R. Z., Zheng, W., Albanes, D., Amundadottir, L., Bamlet, W. R., Barricarte, A., Bingham, S. A., Boeing, H., et al. (2010). Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the pancreatic cancer cohort consortium (PanScan). Archives of Internal Medicine, 170(9), 791–802. https://doi.org/10.1001/archinternmed.2010.63

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., & Yee, D. (2010). Diabetes and cancer: A consensus report. CA: A Cancer Journal for Clinicians, 60, 207–221.

    Google Scholar 

  14. Rebours, V., Gaujoux, S., d’Assignies, G., Sauvanet, A., Ruszniewski, P., Lévy, P., Paradis, V., Bedossa, P., & Couvelard, A. (2015). Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clinical Cancer Research, 21(15), 3522–3528. https://doi.org/10.1158/1078-0432.ccr-14-2385

    Article  CAS  PubMed  Google Scholar 

  15. Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., & Straif, K. (2016). Body fatness and cancer — viewpoint of the IARC working group. New Engl J Med, 375(8), 794–798. https://doi.org/10.1056/NEJMsr1606602

    Article  PubMed  Google Scholar 

  16. Bethea, T. N., Kitahara, C. M., Sonderman, J., Patel, A. V., Harvey, C., Knutsen, S. F., Park, Y., Park, S. Y., Fraser, G. E., Jacobs, E. J., Purdue, M. P., Stolzenberg-Solomon, R. Z., Gillanders, E. M., Blot, W. J., Palmer, J. R., & Kolonel, L. N. (2014). A pooled analysis of body mass index and pancreatic cancer mortality in African Americans. Cancer Epidemiology, Biomarkers & Prevention, 23(10), 2119–2125. https://doi.org/10.1158/1055-9965.EPI-14-0422

    Article  CAS  Google Scholar 

  17. Lega, I. C., & Lipscombe, L. L. (2019). Review: Diabetes, obesity, and cancer—Pathophysiology and clinical implications. Endocrine Reviews, 41(1), 33–52. https://doi.org/10.1210/endrev/bnz014

    Article  Google Scholar 

  18. Dawson, D. W., Hertzer, K., Moro, A., Donald, G., Chang, H. H., Go, V. L., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Li, G., Hines, O. J., Rozengurt, E., & Eibl, G. E. (2013). High Fat, high calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prevention Research (Philadelphia, Pa.), 6, 1064–1073.

    Article  CAS  Google Scholar 

  19. Chang, H.-H., Moro, A., Takakura, K., Su, H.-Y., Mo, A., Nakanishi, M., Waldron, R. T., French, S. W., Dawson, D. W., Hines, O. J., Li, G., Go, V. L. W., Sinnett-Smith, J., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Duff, M. O., Rosenberg, D. W., Rozengurt, E., et al. (2017). Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE, 12(9), e0184455. https://doi.org/10.1371/journal.pone.0184455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lashinger, L. M., Harrison, L. M., Rasmussen, A. J., Logsdon, C. D., Fischer, S. M., McArthur, M. J., & Hursting, S. D. (2013). Dietary energy balance modulation of Kras- and Ink4a/Arf+/–driven pancreatic cancer: The role of insulin-like growth factor-I. Cancer Prevention Research (Philadelphia, Pa.), 6(10), 1046–1055. https://doi.org/10.1158/1940-6207.CAPR-13-0185

    Article  CAS  Google Scholar 

  21. Philip, B., Roland, C. L., Daniluk, J., Liu, Y., Chatterjee, D., Gomez, S. B., Ji, B., Huang, H., Wang, H., Fleming, J. B., Logsdon, C. D., & Cruz-Monserrate, Z. (2013). A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology, 145(6), 1449–1458. https://doi.org/10.1053/j.gastro.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  22. Chung, K. M., Singh, J., Lawres, L., Dorans, K. J., Garcia, C., Burkhardt, D. B., Robbins, R., Bhutkar, A., Cardone, R., Zhao, X., Babic, A., Vayrynen, S. A., Dias Costa, A., Nowak, J. A., Chang, D. T., Dunne, R. F., Hezel, A. F., Koong, A. C., Wilhelm, J. J., et al. (2020). Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell, 181(4), 832-847.e818. https://doi.org/10.1016/j.cell.2020.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flier, J. S. (2004). Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116(2), 337–350.

    Article  CAS  PubMed  Google Scholar 

  24. Calle, E. E., & Kaaks, R. (2004). Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nature Reviews Cancer, 4(8), 579–591. https://doi.org/10.1038/nrc1408

    Article  CAS  PubMed  Google Scholar 

  25. Calle, E. E., & Thun, M. J. (2004). Obesity and cancer. Oncogene, 23(38), 6365–6378.

    Article  CAS  PubMed  Google Scholar 

  26. Muoio, D. M., & Newgard, C. B. (2006). Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry, 75, 367–401.

    Article  CAS  PubMed  Google Scholar 

  27. Abbruzzese, J. L., Andersen, D. K., Borrebaeck, C. A. K., Chari, S. T., Costello, E., Cruz-Monserrate, Z., Eibl, G., Engleman, E. G., Fisher, W. E., Habtezion, A., Kim, S. K., Korc, M., Logsdon, C., Lyssiotis, C. A., Pandol, S. J., Rustgi, A., Wolfe, B. M., Zheng, L., & Powers, A. C. (2018). The interface of pancreatic cancer with diabetes, obesity, and inflammation: Research gaps and opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas, 47(5), 516–525. https://doi.org/10.1097/MPA.0000000000001037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Andersen, D. K., Andren-Sandberg, A., Duell, E. J., Goggins, M., Korc, M., Petersen, G. M., Smith, J. P., & Whitcomb, D. C. (2013). Pancreatitis-diabetes-pancreatic cancer: Summary of an NIDDK-NCI workshop. Pancreas, 42(8), 1227–1237. https://doi.org/10.1097/MPA.0b013e3182a9ad9d

    Article  CAS  PubMed  Google Scholar 

  29. Andersen, D. K., Korc, M., Petersen, G. M., Eibl, G., Li, D., Rickels, M. R., Chari, S. T., & Abbruzzese, J. L. (2017). Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes, 66(5), 1103–1110. https://doi.org/10.2337/db16-1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eibl, G., Cruz-Monserrate, Z., Korc, M., Petrov, M. S., Goodarzi, M. O., Fisher, W. E., Habtezion, A., Lugea, A., Pandol, S. J., Hart, P. A., Andersen, D. K., & Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic, Cancer. (2018). Diabetes mellitus and obesity as risk factors for pancreatic cancer. Journal of the Academy of Nutrition and Dietetics, 118(4), 555–567. https://doi.org/10.1016/j.jand.2017.07.005

    Article  PubMed  Google Scholar 

  31. Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15–25. https://doi.org/10.1016/j.cmet.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  32. Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., & Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation, 120(7), 2355–2369. https://doi.org/10.1172/jci40671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, T., Horowitz, M., & Rayner, C. K. (2017). New insights into the anti-diabetic actions of metformin: From the liver to the gut. Expert Review of Gastroenterology & Hepatology, 11(2), 157–166. https://doi.org/10.1080/17474124.2017.1273769

    Article  CAS  Google Scholar 

  34. Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577–1585. https://doi.org/10.1007/s00125-017-4342-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duca, F. A., Côté, C. D., Rasmussen, B. A., Zadeh-Tahmasebi, M., Rutter, G. A., Filippi, B. M., & Lam, T. K. (2015). Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine, 21(5), 506–511. https://doi.org/10.1038/nm.3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, D., Yeung, S. C., Hassan, M. M., Konopleva, M., & Abbruzzese, J. L. (2009). Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology, 137(2), 482–488. https://doi.org/10.1053/j.gastro.2009.04.013

    Article  PubMed  Google Scholar 

  37. de Jong, R. G., Burden, A. M., de Kort, S., van Herk-Sukel, M. P., Vissers, P. A., Janssen, P. K., Haak, H. R., Masclee, A. A., de Vries, F., & Janssen-Heijnen, M. L. (2017). No decreased risk of gastrointestinal cancers in users of metformin in the netherlands; a time-varying analysis of metformin exposure. Cancer Prevention Research (Philadelphia, Pa.), 10(5), 290–297. https://doi.org/10.1158/1940-6207.CAPR-16-0277

    Article  CAS  Google Scholar 

  38. Decensi, A., Puntoni, M., Goodwin, P., Cazzaniga, M., Gennari, A., Bonanni, B., & Gandini, S. (2010). Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prevention Research (Philadelphia, Pa.), 3(11), 1451–1461. https://doi.org/10.1158/1940-6207.CAPR-10-0157

    Article  CAS  Google Scholar 

  39. Zhang, P., Li, H., Tan, X., Chen, L., & Wang, S. (2013). Association of metformin use with cancer incidence and mortality: A meta-analysis. Cancer Epidemiology, 37(3), 207–218. https://doi.org/10.1016/j.canep.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  40. Yu, H., Zhong, X., Gao, P., Shi, J., Wu, Z., Guo, Z., Wang, Z., & Song, Y. (2019). The potential effect of metformin on cancer: An umbrella review. Front Endocrinol (Lausanne), 10, 617. https://doi.org/10.3389/fendo.2019.00617

    Article  CAS  Google Scholar 

  41. Sadeghi, N., Abbruzzese, J. L., Yeung, S. C., Hassan, M., & Li, D. (2012). Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clinical Cancer Research, 18(10), 2905–2912. https://doi.org/10.1158/1078-0432.CCR-11-2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jang, W. I., Kim, M. S., Kang, S. H., Jo, A. J., Kim, Y. J., Tchoe, H. J., Park, C. M., Kim, H. J., Choi, J. A., Choi, H. J., Paik, E. K., Seo, Y. S., Yoo, H. J., Kang, J. K., Han, C. J., Kim, Y. J., Kim, S. B., & Ko, M. J. (2017). Association between metformin use and mortality in patients with type 2 diabetes mellitus and localized resectable pancreatic cancer: a nationwide population-based study in korea. Oncotarget, 8(6), 9587–9596. https://doi.org/10.18632/oncotarget.14525

    Article  PubMed  Google Scholar 

  43. Chaiteerakij, R., Petersen, G. M., Bamlet, W. R., Chaffee, K. G., Zhen, D. B., Burch, P. A., Leof, E. R., Roberts, L. R., & Oberg, A. L. (2016). Metformin use and survival of patients with pancreatic cancer: A cautionary lesson. Journal of Clinical Oncology, 34(16), 1898–1904. https://doi.org/10.1200/JCO.2015.63.3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kordes, S., Pollak, M. N., Zwinderman, A. H., Mathot, R. A., Weterman, M. J., Beeker, A., Punt, C. J., Richel, D. J., & Wilmink, J. W. (2015). Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. The lancet Oncology, 16(7), 839–847. https://doi.org/10.1016/S1470-2045(15)00027-3

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, P. T., Li, B., Liu, F. R., Zhang, M. C., Wang, Q., Li, Y. Y., Xu, C., Liu, Y. H., Yao, Y., & Li, D. (2017). Metformin is associated with survival benefit in pancreatic cancer patients with diabetes: A systematic review and meta-analysis. Oncotarget, 8(15), 25242–25250. https://doi.org/10.18632/oncotarget.15692

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shi, Y. Q., Zhou, X. C., Du, P., Yin, M. Y., Xu, L., Chen, W. J., & Xu, C. F. (2020). Relationships are between metformin use and survival in pancreatic cancer patients concurrent with diabetes: A systematic review and meta-analysis. Medicine (Baltimore), 99(37), e21687. https://doi.org/10.1097/MD.0000000000021687

    Article  CAS  Google Scholar 

  47. Yoo, D., Kim, N., Hwang, D. W., Song, K. B., Lee, J. H., Lee, W., Kwon, J., Park, Y., Hong, S., Lee, J. W., Hwang, K., Shin, D., Tak, E., & Kim, S. C. (2020). Association between metformin use and clinical outcomes following pancreaticoduodenectomy in patients with type 2 diabetes and pancreatic ductal adenocarcinoma. Journal of Clinical Medicine, 9(6), E1953. https://doi.org/10.3390/jcm9061953

    Article  CAS  PubMed  Google Scholar 

  48. Wei, M., Liu, Y., Bi, Y., & Zhang, Z. J. (2019). Metformin and pancreatic cancer survival: Real effect or immortal time bias? International Journal of Cancer, 145(7), 1822–1828. https://doi.org/10.1002/ijc.32254

    Article  CAS  PubMed  Google Scholar 

  49. Tamburrino, D., Guarneri, G., Pagnanelli, M., Crippa, S., Partelli, S., Belfiori, G., Capurso, G., & Falconi, M. (2021). Chemopreventive agents after pancreatic resection for ductal adenocarcinoma: Legend or scientific evidence? Annals of Surgical Oncology, 28(4), 2312–2322. https://doi.org/10.1245/s10434-020-09097-y

    Article  PubMed  Google Scholar 

  50. Kim, J., Bae, Y. J., Lee, J. W., Kim, Y. S., Kim, Y., You, H. S., Kim, H. S., Choi, E. A., Han, Y. E., & Kang, H. T. (2021). Metformin use in cancer survivors with diabetes reduces all-cause mortality, based on the Korean National Health Insurance Service between 2002 and 2015. Medicine (Baltimore), 100(11), e25045. https://doi.org/10.1097/MD.0000000000025045

    Article  CAS  Google Scholar 

  51. Li, X., Li, T., Liu, Z., Gou, S., & Wang, C. (2017). The effect of metformin on survival of patients with pancreatic cancer: A meta-analysis. Science and Reports, 7(1), 5825. https://doi.org/10.1038/s41598-017-06207-x

    Article  CAS  Google Scholar 

  52. Schneider, M. B., Matsuzaki, H., Haorah, J., Ulrich, A., Standop, J., Ding, X. Z., Adrian, T. E., & Pour, P. M. (2001). Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology, 120(5), 1263–1270. https://doi.org/10.1053/gast.2001.23258

    Article  CAS  PubMed  Google Scholar 

  53. Cifarelli, V., Lashinger, L. M., Devlin, K. L., Dunlap, S. M., Huang, J., Kaaks, R., Pollak, M. N., & Hursting, S. D. (2015). Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms. Diabetes, 64(5), 1632–1642. https://doi.org/10.2337/db14-1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yue, W., Zheng, X., Lin, Y., Yang, C. S., Xu, Q., Carpizo, D., Huang, H., DiPaola, R. S., & Tan, X. L. (2015). Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget, 6(25), 21208–21224. https://doi.org/10.18632/oncotarget.4126

    Article  PubMed  PubMed Central  Google Scholar 

  55. Incio, J., Suboj, P., Chin, S. M., Vardam-Kaur, T., Liu, H., Hato, T., Babykutty, S., Chen, I., Deshpande, V., Jain, R. K., & Fukumura, D. (2015). Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS ONE, 10(12), e0141392. https://doi.org/10.1371/journal.pone.0141392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kato, K., Iwama, H., Yamashita, T., Kobayashi, K., Fujihara, S., Fujimori, T., Kamada, H., Kobara, H., & Masaki, T. (2016). The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin. Oncology Reports, 35(3), 1582–1592. https://doi.org/10.3892/or.2015.4496

    Article  CAS  PubMed  Google Scholar 

  57. Shi, Y., He, Z., Jia, Z., & Xu, C. (2016). Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Molecular Medicine Reports, 14(4), 2921–2928. https://doi.org/10.3892/mmr.2016.5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, C., Zhang, T., Liao, Q., Dai, M., Guo, J., Yang, X., Tan, W., Lin, D., Wu, C., & Zhao, Y. (2021). Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein & Cell, 12(2), 128–144. https://doi.org/10.1007/s13238-020-00760-4

    Article  CAS  Google Scholar 

  59. Rajeshkumar, N. V., Yabuuchi, S., Pai, S. G., De Oliveira, E., Kamphorst, J. J., Rabinowitz, J. D., Tejero, H., Al-Shahrour, F., Hidalgo, M., Maitra, A., & Dang, C. V. (2017). Treatment of pancreatic cancer patient-derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clinical Cancer Research, 23(18), 5639–5647. https://doi.org/10.1158/1078-0432.CCR-17-1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lipner, M. B., Marayati, R., Deng, Y., Wang, X., Raftery, L., O’Neil, B. H., & Yeh, J. J. (2016). Metformin treatment does not inhibit growth of pancreatic cancer patient-derived xenografts. PLoS ONE, 11(1), e0147113. https://doi.org/10.1371/journal.pone.0147113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kisfalvi, K., Eibl, G., Sinnett-Smith, J., & Rozengurt, E. (2009). Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Research, 69(16), 6539–6545. https://doi.org/10.1158/0008-5472.CAN-09-0418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kisfalvi, K., Moro, A., Sinnett-Smith, J., Eibl, G., & Rozengurt, E. (2013). Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas, 42(5), 781–785. https://doi.org/10.1097/MPA.0b013e31827aec40

    Article  CAS  PubMed  Google Scholar 

  63. Tan, X. L., Bhattacharyya, K. K., Dutta, S. K., Bamlet, W. R., Rabe, K. G., Wang, E., Smyrk, T. C., Oberg, A. L., Petersen, G. M., & Mukhopadhyay, D. (2015). Metformin suppresses pancreatic tumor growth with inhibition of NFkappaB/STAT3 inflammatory signaling. Pancreas, 44(4), 636–647. https://doi.org/10.1097/MPA.0000000000000308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, K., Qian, W., Jiang, Z., Cheng, L., Li, J., Sun, L., Zhou, C., Gao, L., Lei, M., Yan, B., Cao, J., Duan, W., & Ma, Q. (2017). Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Molecular Cancer, 16(1), 131. https://doi.org/10.1186/s12943-017-0701-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qian, W., Li, J., Chen, K., Jiang, Z., Cheng, L., Zhou, C., Yan, B., Cao, J., Ma, Q., & Duan, W. (2018). Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer. Life Sciences, 208, 253–261. https://doi.org/10.1016/j.lfs.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  66. Chang, H. H., Moro, A., Chou, C. E. N., Dawson, D. W., French, S., Schmidt, A. I., Sinnett-Smith, J., Hao, F., Hines, O. J., Eibl, G., & Rozengurt, E. (2018). Metformin decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity in the conditional KrasG12D mouse model. Science and Reports, 8(1), 5899. https://doi.org/10.1038/s41598-018-24337-8

    Article  CAS  Google Scholar 

  67. Dong, T. S., Chang, H. H., Hauer, M., Lagishetty, V., Katzka, W., Rozengurt, E., Jacobs, J. P., & Eibl, G. (2019). Metformin alters the duodenal microbiome and decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 317(6), G763–G772. https://doi.org/10.1152/ajpgi.00170.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eibl, G. (2020). Endocrine-exocrine signals in obesity-associated pancreatic cancer. Nature Reviews. Gastroenterology & Hepatology, 17(8), 455–456. https://doi.org/10.1038/s41575-020-0324-6

    Article  CAS  Google Scholar 

  69. Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: From mechanisms of action to therapies. Cell Metabolism, 20(6), 953–966. https://doi.org/10.1016/j.cmet.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  70. Pollak, M. (2017). The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 60(9), 1662–1667. https://doi.org/10.1007/s00125-017-4352-x

    Article  CAS  PubMed  Google Scholar 

  71. Pollak, M. N. (2012). Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discovery, 2(9), 778–790. https://doi.org/10.1158/2159-8290.CD-12-0263

    Article  CAS  PubMed  Google Scholar 

  72. Pollak, M. (2010). Metformin and other biguanides in oncology: Advancing the research agenda. Cancer Prevention Research (Philadelphia, Pa.), 3(9), 1060–1065. https://doi.org/10.1158/1940-6207.CAPR-10-0175

    Article  CAS  Google Scholar 

  73. Coll, A. P., Chen, M., Taskar, P., Rimmington, D., Patel, S., Tadross, J. A., Cimino, I., Yang, M., Welsh, P., Virtue, S., Goldspink, D. A., Miedzybrodzka, E. L., Konopka, A. R., Esponda, R. R., Huang, J. T., Tung, Y. C. L., Rodriguez-Cuenca, S., Tomaz, R. A., Harding, H. P., et al. (2020). GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 578(7795), 444–448. https://doi.org/10.1038/s41586-019-1911-y

    Article  CAS  PubMed  Google Scholar 

  74. Rozengurt, E., & Eibl, G. (2019). Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development. World Journal of Gastroenterology, 25(15), 1797–1816. https://doi.org/10.3748/wjg.v25.i15.1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Foretz, M., Guigas, B., & Viollet, B. (2019). Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews. Endocrinology, 15(10), 569–589. https://doi.org/10.1038/s41574-019-0242-2

    Article  CAS  PubMed  Google Scholar 

  76. Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M., & Hardie, D. G. (2010). Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metabolism, 11(6), 554–565. https://doi.org/10.1016/j.cmet.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y., & Bost, F. (2008). The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 27(25), 3576–3586. https://doi.org/10.1038/sj.onc.1211024

    Article  CAS  PubMed  Google Scholar 

  78. Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brule, S., Viollet, B., Kemp, B. E., Bardeesy, N., Dennis, P., Schlager, J. J., Marette, A., Kozma, S. C., & Thomas, G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabolism, 11(5), 390–401. https://doi.org/10.1016/j.cmet.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. LaMoia, T. E., & Shulman, G. I. (2021). Cellular and molecular mechanisms of metformin action. Endocrine Reviews, 42(1), 77–96. https://doi.org/10.1210/endrev/bnaa023

    Article  PubMed  Google Scholar 

  80. Wang, L. W., Li, Z. S., Zou, D. W., Jin, Z. D., Gao, J., & Xu, G. M. (2008). Metformin induces apoptosis of pancreatic cancer cells. World Journal of Gastroenterology, 14(47), 7192–7198. https://doi.org/10.3748/wjg.14.7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bao, B., Wang, Z., Ali, S., Ahmad, A., Azmi, A. S., Sarkar, S. H., Banerjee, S., Kong, D., Li, Y., Thakur, S., & Sarkar, F. H. (2012). Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 5(3), 355–364. https://doi.org/10.1158/1940-6207.CAPR-11-0299

    Article  CAS  Google Scholar 

  82. Nair, V., Sreevalsan, S., Basha, R., Abdelrahim, M., Abudayyeh, A., Rodrigues Hoffman, A., & Safe, S. (2014). Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: Role of specificity protein (Sp) transcription factors. Journal of Biological Chemistry, 289(40), 27692–27701. https://doi.org/10.1074/jbc.M114.592576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan, Y., Zhou, X. E., Xu, H. E., & Melcher, K. (2018). Structure and Physiological Regulation of AMPK. International Journal of Molecular Sciences, 19(11), 3534. https://doi.org/10.3390/ijms19113534

    Article  CAS  PubMed Central  Google Scholar 

  84. Hardie, D. G. (2015). AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Current Opinion in Cell Biology, 33, 1–7. https://doi.org/10.1016/j.ceb.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  85. Olivier, S., Foretz, M., & Viollet, B. (2018). Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol, 153, 147–158. https://doi.org/10.1016/j.bcp.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  86. Hezel, A. F., & Bardeesy, N. (2008). LKB1; linking cell structure and tumor suppression. Oncogene, 27(55), 6908–6919. https://doi.org/10.1038/onc.2008.342

    Article  CAS  PubMed  Google Scholar 

  87. Bridges, H. R., Jones, A. J., Pollak, M. N., & Hirst, J. (2014). Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. The Biochemical Journal, 462(3), 475–487. https://doi.org/10.1042/bj20140620

    Article  CAS  PubMed  Google Scholar 

  88. Pryor, R., & Cabreiro, F. (2015). Repurposing metformin: An old drug with new tricks in its binding pockets. The Biochemical Journal, 471(3), 307–322. https://doi.org/10.1042/bj20150497

    Article  CAS  PubMed  Google Scholar 

  89. Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ming, M., Sinnett-Smith, J., Wang, J., Soares, H. P., Young, S. H., Eibl, G., & Rozengurt, E. (2014). Dose-dependent AMPK-dependent and independent mechanisms of berberine and metformin inhibition of mTORC1, ERK, DNA synthesis and proliferation in pancreatic cancer cells. PLoS ONE, 9(12), e114573. https://doi.org/10.1371/journal.pone.0114573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sinnett-Smith, J., Kisfalvi, K., Kui, R., & Rozengurt, E. (2013). Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK. Biochemical and Biophysical Research Communications, 430(1), 352–357. https://doi.org/10.1016/j.bbrc.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  92. Carroll, B., & Dunlop, E. A. (2017). The lysosome: A crucial hub for AMPK and mTORC1 signalling. The Biochemical Journal, 474(9), 1453–1466. https://doi.org/10.1042/BCJ20160780

    Article  CAS  PubMed  Google Scholar 

  93. Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews Molecular Cell Biology, 7(2), 85–96.

    Article  CAS  PubMed  Google Scholar 

  94. Rozengurt, E. (2014). Mechanistic target of rapamycin (mTOR): A point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells. Frontiers in Physiology, 5, 357. https://doi.org/10.3389/fphys.2014.00357

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rozengurt, E., Soares, H. P., & Sinnet-Smith, J. (2014). Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: An unintended consequence leading to drug resistance. Molecular Cancer Therapeutics, 13(11), 2477–2488. https://doi.org/10.1158/1535-7163.mct-14-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Soares, H. P., Ni, Y., Kisfalvi, K., Sinnett-Smith, J., & Rozengurt, E. (2013). Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS ONE, 8(2), e57289. https://doi.org/10.1371/journal.pone.0057289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Soares, H. P., Ming, M., Mellon, M., Young, S. H., Han, L., Sinnet-Smith, J., & Rozengurt, E. (2015). Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human pancreatic cancer cells through suppression of mTORC2. Molecular Cancer Therapeutics, 14(4), 1014–1023. https://doi.org/10.1158/1535-7163.mct-14-0669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, J. W., Park, S., Takahashi, Y., & Wang, H.-G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS ONE, 5(11), e15394.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Um, S. H., D’Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393–402.

    Article  CAS  PubMed  Google Scholar 

  101. Ali, S. M., & Sabatini, D. M. (2005). Structure of S6 kinase 1 determines whether Raptor-mTOR or Rictor-mTOR phosphorylates its hydrophobic motif site. Journal of Biological Chemistry, 280, 19445–19448.

    Article  CAS  PubMed  Google Scholar 

  102. Long, X., Muller, F., & Avruch, J. (2004). TOR action in mammalian cells and in Caenorhabditis elegans. Current Topics in Microbiology and Immunology, 279, 115–138.

    CAS  PubMed  Google Scholar 

  103. Armengol, G., Rojo, F., Castellvi, J., Iglesias, C., Cuatrecasas, M., Pons, B., Baselga, J., & Ramon y Cajal, S. . (2007). 4E-binding protein 1: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Research, 67(16), 7551–7555.

    Article  CAS  PubMed  Google Scholar 

  104. Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577–590. https://doi.org/10.1016/s0092-8674(03)00929-2

    Article  CAS  PubMed  Google Scholar 

  105. Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., & Cantley, L. C. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6(1), 91–99. https://doi.org/10.1016/j.ccr.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  106. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968. https://doi.org/10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  107. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., & Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226. https://doi.org/10.1016/j.molcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tzatsos, A., & Tsichlis, P. N. (2007). Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. Journal of Biological Chemistry, 282(25), 18069–18082. https://doi.org/10.1074/jbc.M610101200

    Article  CAS  PubMed  Google Scholar 

  109. Ning, J., & Clemmons, D. R. (2010). AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Molecular Endocrinology, 24(6), 1218–1229. https://doi.org/10.1210/me.2009-0474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Piccolo, S., Dupont, S., & Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and beyond. Physiological Reviews, 94(4), 1287–1312. https://doi.org/10.1152/physrev.00005.2014

    Article  CAS  PubMed  Google Scholar 

  111. Yu, F. X., Zhao, B., & Guan, K. L. (2015). Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 163(4), 811–828. https://doi.org/10.1016/j.cell.2015.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Enzo, E., Santinon, G., Pocaterra, A., Aragona, M., Bresolin, S., Forcato, M., Grifoni, D., Pession, A., Zanconato, F., Guzzo, G., Bicciato, S., & Dupont, S. (2015). Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J, 34(10), 1349–1370. https://doi.org/10.15252/embj.201490379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N., & Huang, L. (2014). Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A, 111(1), E89-98. https://doi.org/10.1073/pnas.1319190110

    Article  CAS  PubMed  Google Scholar 

  114. Santinon, G., Pocaterra, A., & Dupont, S. (2016). Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends in Cell Biology, 26(4), 289–299. https://doi.org/10.1016/j.tcb.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  115. Ardestani, A., Lupse, B., & Maedler, K. (2018). Hippo signaling: Key emerging pathway in cellular and whole-body metabolism. Trends in Endocrinology and Metabolism , 29(7), 492–509. https://doi.org/10.1016/j.tem.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  116. Koo, J. H., & Guan, K. L. (2018). Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 28(2), 196–206. https://doi.org/10.1016/j.cmet.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  117. Plouffe, S. W., Lin, K. C., Moore, J. L., 3rd., Tan, F. E., Ma, S., Ye, Z., Qiu, Y., Ren, B., & Guan, K. L. (2018). The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. Journal of Biological Chemistry, 293(28), 11230–11240. https://doi.org/10.1074/jbc.RA118.002715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Callus, B. A., Finch-Edmondson, M. L., Fletcher, S., & Wilton, S. D. (2019). YAPping about and not forgetting TAZ. FEBS Letters, 593(3), 253–276. https://doi.org/10.1002/1873-3468.13318

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, W., Nandakumar, N., Shi, Y., Manzano, M., Smith, A., Graham, G., Gupta, S., Vietsch, E. E., Laughlin, S. Z., Wadhwa, M., Chetram, M., Joshi, M., Wang, F., Kallakury, B., Toretsky, J., Wellstein, A., & Yi, C. (2014). Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Science Signaling, 7(324), ra42. https://doi.org/10.1126/scisignal.2005049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gruber, R., Panayiotou, R., Nye, E., Spencer-Dene, B., Stamp, G., & Behrens, A. (2016). YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling. Gastroenterology, 151(3), 526–539. https://doi.org/10.1053/j.gastro.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  121. Tu, B., Yao, J., Ferri-Borgogno, S., Zhao, J., Chen, S., Wang, Q., Yan, L., Zhou, X., Zhu, C., Bang, S., Chang, Q., Bristow, C. A., Kang, Y., Zheng, H., Wang, H., Fleming, J. B., Kim, M., Heffernan, T. P., Draetta, G. F., et al. (2019). YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight, 4(21), e130811. https://doi.org/10.1172/jci.insight.130811

    Article  PubMed Central  Google Scholar 

  122. Rozengurt, E., Sinnett-Smith, J., & Eibl, G. (2018). Yes-associated protein (YAP) in pancreatic cancer: At the epicenter of a targetable signaling network associated with patient survival. Signal Transduction and Targeted Therapy, 3, 11. https://doi.org/10.1038/s41392-017-0005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kapoor, A., Yao, W., Ying, H., Hua, S., Liewen, A., Wang, Q., Zhong, Y., Wu, C. J., Sadanandam, A., Hu, B., Chang, Q., Chu, G. C., Al-Khalil, R., Jiang, S., Xia, H., Fletcher-Sananikone, E., Lim, C., Horwitz, G. I., Viale, A., et al. (2014). Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell, 158(1), 185–197. https://doi.org/10.1016/j.cell.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang, S., Zhang, L., Purohit, V., Shukla, S. K., Chen, X., Yu, F., Fu, K., Chen, Y., Solheim, J., Singh, P. K., Song, W., & Dong, J. (2015). Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget, 6(34), 36019–36031. https://doi.org/10.18632/oncotarget.5935

    Article  PubMed  PubMed Central  Google Scholar 

  125. Morvaridi, S., Dhall, D., Greene, M. I., Pandol, S. J., & Wang, Q. (2015). Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Science and Reports, 5, 16759. https://doi.org/10.1038/srep16759

    Article  CAS  Google Scholar 

  126. Murakami, S., Shahbazian, D., Surana, R., Zhang, W., Chen, H., Graham, G. T., White, S. M., Weiner, L. M., & Yi, C. (2017). Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene, 36(9), 1232–1244. https://doi.org/10.1038/onc.2016.288

    Article  CAS  PubMed  Google Scholar 

  127. Mueller, S., Engleitner, T., Maresch, R., Zukowska, M., Lange, S., Kaltenbacher, T., Konukiewitz, B., Ollinger, R., Zwiebel, M., Strong, A., Yen, H. Y., Banerjee, R., Louzada, S., Fu, B., Seidler, B., Gotzfried, J., Schuck, K., Hassan, Z., Arbeiter, A., et al. (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 554(7690), 62–68. https://doi.org/10.1038/nature25459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hajimoradi Javarsiani, M., Sajedianfard, J., & Haghjooy Javanmard, S. (2020). The effects of metformin on the hippo pathway in the proliferation of melanoma cancer cells: a preclinical study. Archives of Physiology and Biochemistry, pp, 1–6. https://doi.org/10.1080/13813455.2020.1760304.

  129. Liu, J., Li, J., Chen, H., Wang, R., Li, P., Miao, Y., & Liu, P. (2020). Metformin suppresses proliferation and invasion of drug-resistant breast cancer cells by activation of the Hippo pathway. Journal of Cellular and Molecular Medicine, 24(10), 5786–5796. https://doi.org/10.1111/jcmm.15241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jin, D., Guo, J., Wu, Y., Chen, W., Du, J., Yang, L., Wang, X., Gong, K., Dai, J., Miao, S., Li, X., & Su, G. (2020). Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. Journal of Experimental & Clinical Cancer Research, 39(1), 6. https://doi.org/10.1186/s13046-019-1503-6

    Article  CAS  Google Scholar 

  131. Wu, Y., Zheng, Q., Li, Y., Wang, G., Gao, S., Zhang, X., Yan, X., Zhang, X., Xie, J., Wang, Y., Sun, X., Meng, X., Yin, B., & Wang, B. (2019). Metformin targets a YAP1-TEAD4 complex via AMPKalpha to regulate CCNE1/2 in bladder cancer cells. Journal of Experimental & Clinical Cancer Research, 38(1), 376. https://doi.org/10.1186/s13046-019-1346-1

    Article  CAS  Google Scholar 

  132. Yuan, X., Wei, W., Bao, Q., Chen, H., Jin, P., & Jiang, W. (2018). Metformin inhibits glioma cells stemness and epithelial-mesenchymal transition via regulating YAP activity. Biomedicine & Pharmacotherapy, 102, 263–270. https://doi.org/10.1016/j.biopha.2018.03.031

    Article  CAS  Google Scholar 

  133. Tian, Y., Tang, B., Wang, C., Sun, D., Zhang, R., Luo, N., Han, Z., Liang, R., Gao, Z., & Wang, L. (2016). Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP. Oncotarget, 7(29), 46230–46241. https://doi.org/10.18632/oncotarget.10079

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mo, J. S., Meng, Z., Kim, Y. C., Park, H. W., Hansen, C. G., Kim, S., Lim, D. S., & Guan, K. L. (2015). Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 17(4), 500–510. https://doi.org/10.1038/ncb3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, W., Xiao, Z. D., Li, X., Aziz, K. E., Gan, B., Johnson, R. L., & Chen, J. (2015). AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nature Cell Biology, 17(4), 490–499. https://doi.org/10.1038/ncb3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Omkumar, R. V., Darnay, B. G., & Rodwell, V. W. (1994). Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem, 269(9), 6810–6814.

    Article  CAS  PubMed  Google Scholar 

  137. Moroishi, T., Hansen, C. G., & Guan, K. L. (2015). The emerging roles of YAP and TAZ in cancer. Nature Reviews Cancer, 15(2), 73–79. https://doi.org/10.1038/nrc3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. DeRan, M., Yang, J., Shen, C. H., Peters, E. C., Fitamant, J., Chan, P., Hsieh, M., Zhu, S., Asara, J. M., Zheng, B., Bardeesy, N., Liu, J., & Wu, X. (2014). Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Reports, 9(2), 495–503. https://doi.org/10.1016/j.celrep.2014.09.036

    Article  CAS  PubMed  Google Scholar 

  139. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310(5754), 1642–1646. https://doi.org/10.1126/science.1120781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Berker, B., Emral, R., Demirel, C., Corapcioglu, D., Unlu, C., & Kose, K. (2004). Increased insulin-like growth factor-I levels in women with polycystic ovary syndrome, and beneficial effects of metformin therapy. Gynecological Endocrinology, 19(3), 125–133. https://doi.org/10.1080/09513590400007309

    Article  CAS  PubMed  Google Scholar 

  141. Goodwin, P. J., Pritchard, K. I., Ennis, M., Clemons, M., Graham, M., & Fantus, I. G. (2008). Insulin-lowering effects of metformin in women with early breast cancer. Clinical Breast Cancer, 8(6), 501–505. https://doi.org/10.3816/CBC.2008.n.060

    Article  CAS  PubMed  Google Scholar 

  142. Mutgan, A. C., Besikcioglu, H. E., Wang, S., Friess, H., Ceyhan, G. O., & Demir, I. E. (2018). Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Molecular Cancer, 17(1), 66. https://doi.org/10.1186/s12943-018-0806-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., Xu, D., Yang, F., Fu, D., Wang, C., Hu, B., Zhang, Z., Li, T., Yan, S., Wang, X., Nelson, P. J., Bruns, C., Qin, L., & Dong, Q. (2020). Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduction and Targeted Therapy, 5(1), 53. https://doi.org/10.1038/s41392-020-0146-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Trajkovic-Arsic, M., Kalideris, E., & Siveke, J. T. (2013). The role of insulin and IGF system in pancreatic cancer. Journal of Molecular Endocrinology, 50(3), R67-74. https://doi.org/10.1530/JME-12-0259

    Article  CAS  PubMed  Google Scholar 

  145. Renehan, A. G., Frystyk, J., & Flyvbjerg, A. (2006). Obesity and cancer risk: The role of the insulin-IGF axis. Trends in Endocrinology and Metabolism , 17(8), 328–336. https://doi.org/10.1016/j.tem.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  146. Subramani, R., Lopez-Valdez, R., Arumugam, A., Nandy, S., Boopalan, T., & Lakshmanaswamy, R. (2014). Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE, 9(5), e97016. https://doi.org/10.1371/journal.pone.0097016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gong, J., Robbins, L. A., Lugea, A., Waldron, R. T., Jeon, C. Y., & Pandol, S. J. (2014). Diabetes, pancreatic cancer, and metformin therapy. Frontiers in Physiology, 5, 426. https://doi.org/10.3389/fphys.2014.00426

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hao, F., Xu, Q., Zhao, Y., Stevens, J. V., Young, S. H., Sinnett-Smith, J., & Rozengurt, E. (2017). Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Molecular Cancer Research, 15(7), 929–941. https://doi.org/10.1158/1541-7786.MCR-17-0023

    Article  CAS  PubMed  Google Scholar 

  149. Rozengurt, E., Sinnett-Smith, J., & Kisfalvi, K. (2010). Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: A novel target for the antidiabetic drug metformin in pancreatic cancer. Clinical Cancer Research, 16(9), 2505–2511. https://doi.org/10.1158/1078-0432.CCR-09-2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, S. S., Ma, X. F., Zhao, J., Du, S. X., Zhang, J., Dong, M. Z., & Xin, Y. N. (2020). Association between nonalcoholic fatty liver disease and extrahepatic cancers: A systematic review and meta-analysis. Lipids in Health and Disease, 19(1), 118. https://doi.org/10.1186/s12944-020-01288-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chang, C. F., Tseng, Y. C., Huang, H. H., Shih, Y. L., Hsieh, T. Y., & Lin, H. H. (2018). Exploring the relationship between nonalcoholic fatty liver disease and pancreatic cancer by computed tomographic survey. Internal and Emergency Medicine, 13(2), 191–197. https://doi.org/10.1007/s11739-017-1774-x

    Article  PubMed  Google Scholar 

  152. Murphy, N., Jenab, M., & Gunter, M. J. (2018). Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nature Reviews. Gastroenterology & Hepatology, 15(11), 659–670. https://doi.org/10.1038/s41575-018-0038-1

    Article  CAS  Google Scholar 

  153. Maruvada, P., Leone, V., Kaplan, L. M., & Chang, E. B. (2017). The Human Microbiome and Obesity: Moving beyond Associations. Cell Host & Microbe, 22(5), 589–599. https://doi.org/10.1016/j.chom.2017.10.005

    Article  CAS  Google Scholar 

  154. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  155. He, L. (2020). Metformin and Systemic Metabolism. Trends in Pharmacological Sciences, 41(11), 868–881. https://doi.org/10.1016/j.tips.2020.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H. K., Arumugam, M., Kristiansen, K., Voigt, A. Y., Vestergaard, H., Hercog, R., Costea, P. I., Kultima, J. R., Li, J., Jorgensen, T., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Manneras-Holm, L., Stahlman, M., Olsson, L. M., Serino, M., Planas-Felix, M., Xifra, G., Mercader, J. M., Torrents, D., Burcelin, R., Ricart, W., Perkins, R., Fernandez-Real, J. M., & Backhed, F. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 23(7), 850–858. https://doi.org/10.1038/nm.4345

    Article  CAS  PubMed  Google Scholar 

  158. Shin, N. R., Lee, J. C., Lee, H. Y., Kim, M. S., Whon, T. W., Lee, M. S., & Bae, J. W. (2014). An increase in the Akkermansia spp population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 63(5), 727–735. https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  159. Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., Quesada, P., Sahin, I., Chandra, V., San Lucas, A., Scheet, P., Xu, H., Hanash, S. M., Feng, L., Burks, J. K., Do, K. A., Peterson, C. B., Nejman, D., Tzeng, C. D., et al. (2019). Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178(4), 795-806.e712. https://doi.org/10.1016/j.cell.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., Zhang, L., Sharma, U., Giri, B., Garg, B., Ferrantella, A., Vickers, S. M., Banerjee, S., Dawra, R., Roy, S., Ramakrishnan, S., Saluja, A., & Dudeja, V. (2018). Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology, 155(1), 33-37.e36. https://doi.org/10.1053/j.gastro.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  161. Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C. P., Kurz, E., Mishra, A., Mohan, N., Aykut, B., Usyk, M., Torres, L. E., Werba, G., Zhang, K., Guo, Y., Li, Q., Akkad, N., Lall, S., Wadowski, B., Gutierrez, J., Kochen Rossi, J. A., et al. (2018). The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 8(4), 403–416. https://doi.org/10.1158/2159-8290.CD-17-1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mannucci, E., Tesi, F., Bardini, G., Ognibene, A., Petracca, M. G., Ciani, S., Pezzatini, A., Brogi, M., Dicembrini, I., Cremasco, F., Messeri, G., & Rotella, C. M. (2004). Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without Type 2 diabetes. Diabetes, Nutrition & Metabolism, 17(6), 336–342.

    CAS  Google Scholar 

  163. Napolitano, A., Miller, S., Nicholls, A. W., Baker, D., Van Horn, S., Thomas, E., Rajpal, D., Spivak, A., Brown, J. R., & Nunez, D. J. (2014). Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE, 9(7), e100778. https://doi.org/10.1371/journal.pone.0100778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Duca, F. A., Bauer, P. V., Hamr, S. C., & Lam, T. K. (2015). Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metabolism, 22(3), 367–380. https://doi.org/10.1016/j.cmet.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  165. Yang, M., Darwish, T., Larraufie, P., Rimmington, D., Cimino, I., Goldspink, D. A., Jenkins, B., Koulman, A., Brighton, C. A., Ma, M., Lam, B. Y. H., Coll, A. P., O’Rahilly, S., Reimann, F., & Gribble, F. M. (2021). Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Science and Reports, 11(1), 2529. https://doi.org/10.1038/s41598-021-81349-7

    Article  CAS  Google Scholar 

Download references

Funding

Guido Eibl is supported by the National Institutes of Health, National Cancer Institute (P01CA236585), and the Hirshberg Foundation for Pancreatic Cancer Research. Enrique Rozengurt is supported by the National Institutes of Health, National Cancer Institute (P01CA236585), National Institute of Allergy and Infectious Diseases (R21AI156592), the Veterans Administration (I01BX003801), and the Hirshberg Foundation for Pancreatic Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Eibl.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eibl, G., Rozengurt, E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 40, 865–878 (2021). https://doi.org/10.1007/s10555-021-09977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09977-z

Keywords

Navigation