Skip to main content

Advertisement

Log in

Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., & DePinho, R. A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development. https://doi.org/10.1101/gad.1415606.

  2. Distler, M., Aust, D., Weitz, J., Pilarsky, C., & Grützmann, R. (2014). Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. BioMed Research International. https://doi.org/10.1155/2014/474905.

  3. Weissmueller, S., et al. (2014). Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. https://doi.org/10.1016/j.cell.2014.01.066.

  4. Makohon-Moore, A., & Iacobuzio-Donahue, C. A. (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nature Reviews Cancer. https://doi.org/10.1038/nrc.2016.66.

  5. Khan, S., Ansarullah, D., Kumar, M. J., & Chauhan, S. C. (2013). Targeting microRNAs in pancreatic cancer: Microplayers in the big game. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-13-1288.

  6. Troiani, T., et al. (2012). Targeting EGFR in pancreatic cancer treatment. Current Drug Targets. https://doi.org/10.2174/138945012800564158.

  7. Korc, M., Meltzer, P., & Trent, J. (1986). Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.83.14.5141.

  8. Shimizu, N., Kondo, I., Gamou, S., Behzadian, M. A., & Shimizu, Y. (1984). Genetic analysis of hyperproduction of epidermal growth factor receptors in human epidermoid carcinoma A431 cells. Somatic Cell and Molecular Genetics. https://doi.org/10.1007/BF01534472.

  9. Barton, C. M., Hall, P. A., Hughes, C. M., Gullick, W. J., & Lemoine, N. R. (1991). Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. The Journal of Pathology. https://doi.org/10.1002/path.1711630206.

  10. Tobita, K., et al. (2003). Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.11.3.305.

  11. Moore, M. J., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada clinical trials group. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2006.07.9525.

  12. Da Cunha Santos, G., et al. (2010). Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada clinical trials group study PA.3. Cancer. https://doi.org/10.1002/cncr.25393.

  13. Boeck, S., et al. (2013). EGFR pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: Translational results from the randomised, crossover phase 3 trial AIO-PK0104. British Journal of Cancer. https://doi.org/10.1038/bjc.2012.495.

  14. Schultheis, B., et al. (2017). Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: A multicenter, randomized phase IIb study. Annals of Oncology. https://doi.org/10.1093/annonc/mdx343.

  15. Yang, L., et al. (2019). Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. Journal of Experimental & Clinical Cancer Research. https://doi.org/10.1186/s13046-018-1015-9.

  16. Nagaraj, N. S., Washington, M. K., & Merchant, N. B. (2011). Combined blockade of Src kinase and epidermal growth factor receptor with gemcitabine overcomes STAT3-mediated resistance of inhibition of pancreatic tumor growth. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-10-1670.

  17. Dosch, A. R., et al. (2020). Combined Src/EGFR inhibition targets STAT3 signaling and induces stromal remodeling to improve survival in pancreatic cancer. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-19-0741.

  18. Cascinu, S., et al. (2008). Cetuximab plus gemcitabine and cisplatin compared with gemcitabine and cisplatin alone in patients with advanced pancreatic cancer: A randomised, multicentre, phase II trial. The Lancet Oncology. https://doi.org/10.1016/S1470-2045(07)70383-2.

  19. Philip, P. A., et al. (2010). Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest oncology group-directed intergroup trial S0205. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2009.25.7550.

  20. Khan, K., et al. (2016). miR-21 expression and clinical outcome in locally advanced pancreatic cancer: Exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget. https://doi.org/10.18632/oncotarget.7208.

  21. Burtness, B., Powell, M., Catalano, P., Berlin, J., Liles, D. K., Chapman, A. E., Mitchell, E., & Benson, A. B. (2016). Randomized phase ii trial of irinotecan/docetaxel or irinotecan/docetaxel plus cetuximab for metastatic pancreatic cancer: An eastern cooperative oncology group study. American Journal of Clinical Oncology CANCER CLINICAL TRIALS, 39, 340–345. https://doi.org/10.1097/COC.0000000000000068.

    Article  CAS  Google Scholar 

  22. Forster, T., et al. (2020). Cetuximab in pancreatic cancer therapy: A systematic review and meta-analysis. Oncol. https://doi.org/10.1159/000502844.

  23. Philip, P. A., et al. (2014). Dual blockade of epidermal growth factor receptor and insulin-like growth factor receptor-1 signaling in metastatic pancreatic cancer: Phase Ib and randomized phase II trial of gemcitabine, erlotinib, and cixutumumab versus gemcitabine plus erlotinib (SWO). Cancer. https://doi.org/10.1002/cncr.28744.

  24. Sinn, M., et al. (2017). CONKO-005: Adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after r0 resection of pancreatic cancer: A multicenter randomized phase III trial. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2017.72.6463.

  25. Cardin, D. B., et al. (2014). Phase II trial of sorafenib and erlotinib in advanced pancreatic cancer. Cancer Medicine. https://doi.org/10.1002/cam4.208.

  26. Ko, A. H., et al. (2016). A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-15-0979.

  27. Javle, M. M., et al. (2011). Randomized phase II study of gemcitabine (G) plus anti-IGF-1R antibody MK-0646, G plus erlotinib (E) plus MK-0646 and G plus E for advanced pancreatic cancer. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2011.29.15_suppl.4026.

  28. Middleton, G., et al. (2017). Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): A prospective, randomised, double-blind, multicentre phase 2 trial. The Lancet Oncology. https://doi.org/10.1016/S1470-2045(17)30084-0.

  29. T. R. Halfdanarson et al., “A phase II randomized trial of panitumumab, erlotinib, and gemcitabine versus erlotinib and gemcitabine in patients with untreated, metastatic pancreatic adenocarcinoma: North Central Cancer Treatment Group Trial N064B (Alliance),” Oncologist, 2019, doi: https://doi.org/10.1634/theoncologist.2018-0878.

  30. Fountzilas, G., et al. (2008). Gemcitabine combined with gefitinib in patients with inoperable or metastatic pancreatic cancer: A phase II study of the Hellenic Cooperative Oncology Group with biomarker evaluation. Cancer Investigation. https://doi.org/10.1080/07357900801918611.

  31. Brell, J. M., et al. (2009). Phase II study of docetaxel and gefitinib as second-line therapy in gemcitabine pretreated patients with advanced pancreatic cancer. Oncology. https://doi.org/10.1159/000206141.

  32. Wu, Z., et al. (2015). Phase II study of lapatinib and capecitabine in second-line treatment for metastatic pancreatic cancer. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-015-2855-z.

  33. Veikkola, T., Karkkainen, M., Claesson-Welsh, L., & Alitalo, K. (2000). Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Research.

  34. Kindler, H. L., et al. (2005). Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2005.01.9661.

  35. Kindler, H. L., et al. (2010). Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the Cancer and Leukemia Group B (CALGB 80303). Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2010.28.1386.

  36. Ko, A. H., et al. (2010). A phase II study of bevacizumab plus erlotinib for gemcitabine-refractory metastatic pancreatic cancer. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-010-1257-5.

  37. Watkins, D. J., et al. (2014). The combination of a chemotherapy doublet (gemcitabine and capecitabine) with a biological doublet (bevacizumab and erlotinib) in patients with advanced pancreatic adenocarcinoma. The results of a phase I/II study. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2014.02.003.

  38. Spano, J. P., et al. (2008). Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: An open-label randomised phase II study. Lancet. https://doi.org/10.1016/S0140-6736(08)60661-3.

  39. Kindler, H. L., et al. (2011). Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: A double-blind randomised phase 3 study. The Lancet Oncology. https://doi.org/10.1016/S1470-2045(11)70004-3.

  40. Kindler, H. L., et al. (2012). Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: A phase II trial of the University of Chicago Phase II Consortium. Investigational New Drugs. https://doi.org/10.1007/s10637-010-9526-z.

  41. Dragovich, T., et al. (2014). Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001). Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-014-2499-4.

  42. Brandt-Rauf, P. W., Pincus, M. R., & Carney, W. P. (1994). The c-erbB-2 protein in oncogenesis: Molecular structure to molecular epidemiology. Critical Reviews in Oncogenesis. https://doi.org/10.1615/CritRevOncog.v5.i2-3.100.

  43. Komoto, M., et al. (2010). In vitro and in vivo evidence that a combination of lapatinib plus S-1 is a promising treatment for pancreatic cancer. Cancer Science. https://doi.org/10.1111/j.1349-7006.2009.01405.x.

  44. Safran, H., et al. (2001). Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. American Journal of Clinical Oncology Cancer Clinical Trials. https://doi.org/10.1097/00000421-200110000-00016.

  45. Yamanaka, Y., et al. (1993). Overexpression of HER2/neu oncogene in human pancreatic carcinoma. Human Pathology. https://doi.org/10.1016/0046-8177(93)90194-L.

  46. J. D. Day et al., “Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms,” Human Pathology, 1996, doi: https://doi.org/10.1016/S0046-8177(96)90364-0.

  47. Safran, H., et al. (2011). Lapatinib and gemcitabine for metastatic pancreatic cancer: A phase II study. American Journal of Clinical Oncology Cancer Clinical Trials. https://doi.org/10.1097/COC.0b013e3181d26b01.

  48. Harder, J., Ihorst, G., Heinemann, V., Hofheinz, R., Moehler, M., Buechler, P., Kloeppel, G., Röcken, C., Bitzer, M., Boeck, S., Endlicher, E., Reinacher-Schick, A., Schmoor, C., & Geissler, M. (2012). Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. British Journal of Cancer, 106, 1033–1038. https://doi.org/10.1038/bjc.2012.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Assenat, E., et al. (2015). Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: Results of the ‘THERAPY’ phase 1–2 trial. Oncotarget. https://doi.org/10.18632/oncotarget.3473.

  50. Hwa, V., Oh, Y., & Rosenfeld, R. G. (1999). The insulin-like growth factor-binding protein (IGFBP) superfamily 1. Endocrine Reviews. https://doi.org/10.1210/edrv.20.6.0382.

  51. Bauer, T. W., et al. (2006). Regulatory role of c-Met in insulin-like growth factor-I receptor - mediated migration and invasion of human pancreatic carcinoma cells. Molecular Cancer Therapeutics. https://doi.org/10.1158/1535-7163.MCT-05-0175.

  52. Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews Cancer. https://doi.org/10.1038/nrc2536.

  53. Schiller, H. B., Szekeres, A., Binder, B. R., Stockinger, H., & Leksa, V. (2009). Mannose 6-phosphate/insulin-like growth factor 2 receptor limits cell invasion by controlling αVβ3 integrin expression and proteolytic processing of urokinase-type plasminogen activator receptor. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E08-06-0569.

  54. Peyrat, J. P., Louchez, M. M., Lefebvre, J., Bonneterre, J., Vennin, P., Demaille, A., Helquet, B., & Fournier, C. (1993). Plasma insulin-like growth factor-1 (IGF-1) concentrations in human breast cancer. European Journal of Cancer, 29, 492–497. https://doi.org/10.1016/S0959-8049(05)80137-6.

    Article  Google Scholar 

  55. Dowling, C. M., et al. (2016). Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget. https://doi.org/10.18632/oncotarget.8062.

  56. Miles, F. L., et al. (2017). Interactions of the insulin-like growth factor axis and vitamin D in prostate cancer risk in the prostate cancer prevention trial. Nutrients. https://doi.org/10.3390/nu9040378.

  57. El-Mesallamy, H. O., Hamdy, N. M., Zaghloul, A. S., & Sallam, A. M. (2013). Clinical value of circulating lipocalins and insulin-like growth factor axis in pancreatic cancer diagnosis. Pancreas. https://doi.org/10.1097/MPA.0b013e3182550d9d.

  58. Wlodarczyk, B., Gasiorowska, A., Borkowska, A., & Malecka-Panas, E. (2017). Evaluation of insulin-like growth factor (IGF-1) and retinol binding protein (RBP-4) levels in patients with newly diagnosed pancreatic adenocarcinoma (PDAC). Pancreatology. https://doi.org/10.1016/j.pan.2017.04.001.

  59. Douglas, J. B., Silverman, D. T., Pollak, M. N., Tao, Y., Soliman, A. S., & Stolzenberg-Solomon, R. Z. (2010). Serum IGF-I, IGF-II, IGFBP-3, and IGF-I/IGFBP-3 molar ratio and risk of pancreatic cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers & Prevention, 19(9), 2298–2306. https://doi.org/10.1158/1055-9965.EPI-10-0400.

    Article  CAS  Google Scholar 

  60. Abdel-Wahab, R., et al. (2018). Randomized, phase I/II study of gemcitabine plus IGF-1R antagonist (MK-0646) versus gemcitabine plus erlotinib with and without MK-0646 for advanced pancreatic adenocarcinoma. Journal of Hematology & Oncology. https://doi.org/10.1186/s13045-018-0616-2.

  61. Fuchs, C. S., et al. (2015). A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: The GAMMA trial. Annals of Oncology. https://doi.org/10.1093/annonc/mdv027.

  62. Jatiani, S. S., Baker, S. J., Silverman, L. R., & Premkumar Reddy, E. (2010). JAK/STAT pathways in cytokine signaling and myeloproliferative disorders: Approaches for targeted therapies. Genes & Cancer. https://doi.org/10.1177/1947601910397187.

  63. Bunt, S. K., Yang, L., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2007). Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-07-2354.

  64. Lili, L. N., Matyunina, L. V., Walker, L. D., Daneker, G. W., & McDonald, J. F. (2014). Evidence for the importance of personalized molecular profiling in pancreatic cancer. Pancreas. https://doi.org/10.1097/MPA.0000000000000020.

  65. Hurwitz, H. I., et al. (2015). Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. Journal of Clinical Oncology. https://doi.org/10.1200/JCO.2015.61.4578.

  66. Cardin, D. B., Thota, R., Goff, L. W., Berlin, J. D., Jones, C. M., Ayers, G. D., Whisenant, J. G., & Chan, E. (2018). A phase II study of ganetespib as second-line or third-line therapy for metastatic pancreatic cancer. American Journal of Clinical Oncology Cancer Clinical Trials, 41, 772–776. https://doi.org/10.1097/COC.0000000000000377.

    Article  CAS  Google Scholar 

  67. Beatty, G. L., et al. (2019). A phase Ib/II study of the JAK1 inhibitor, itacitinib, plus nab -paclitaxel and gemcitabine in advanced solid tumors. Oncologist. https://doi.org/10.1634/theoncologist.2017-0665.

  68. Hebrok, M., Kim, S. K., St-Jacques, B., McMahon, A. P., & Melton, D. A. (2000). Regulation of pancreas development by hedgehog signaling. Development.

  69. Thayer, S. P., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. https://doi.org/10.1038/nature02009.

  70. Li, C., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-06-2030.

  71. Pak, E., & Segal, R. A. (2016). Hedgehog signal transduction: Key players, oncogenic drivers, and cancer therapy. Developmental Cell. https://doi.org/10.1016/j.devcel.2016.07.026.

  72. Rosow, D. E., et al. (2012). Sonic Hedgehog in pancreatic cancer: From bench to bedside, then back to the bench. Surgery. (United States). https://doi.org/10.1016/j.surg.2012.05.030.

  73. Strobel, O., et al. (2010). Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology. https://doi.org/10.1053/j.gastro.2009.12.005.

  74. Di Magliano, M. P., Sekine, S., Ermilov, A., Ferris, J., Dlugosz, A. A., & Hebrok, M. (2006). Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes & Development. https://doi.org/10.1101/gad.1470806.

  75. Bailey, J. M., et al. (2008). Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-08-0291.

  76. Feldmann, G., et al. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-06-3281.

  77. Zhong, S., Zhang, X., Chen, L., Ma, T., Tang, J., & Zhao, J. (2015). Statin use and mortality in cancer patients: Systematic review and meta-analysis of observational studies. Cancer Treatment Reviews. https://doi.org/10.1016/j.ctrv.2015.04.005.

  78. Archibugi, L., et al. (2017). Exclusive and combined use of statins and aspirin and the risk of pancreatic Cancer: A case-control study. Scientific Reports. https://doi.org/10.1038/s41598-017-13430-z.

  79. Lee, H. S., et al. (2016). Statin use and its impact on survival in pancreatic cancer patients. Medicine (United States). https://doi.org/10.1097/MD.0000000000003607.

  80. Yin, Y., et al. (2018). Simvastatin inhibits sonic hedgehog signaling and stemness features of pancreatic cancer. Cancer Letters. https://doi.org/10.1016/j.canlet.2018.04.001.

  81. Avila, J. L., & Kissil, J. L. (2013). Notch signaling in pancreatic cancer: Oncogene or tumor suppressor? Trends in Molecular Medicine. https://doi.org/10.1016/j.molmed.2013.03.003.

  82. Wang, Z., et al. (2009). Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-08-4312.

  83. Mullendore, M. E., et al. (2009). Ligand-dependent notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-08-2004.

  84. Yen, W. C., et al. (2012). Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-notch signaling in both tumor and vasculature cells. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-12-0736.

  85. Cubillo Gracian, A., et al. (2017). YOSEMITE: A 3 arm double-blind randomized phase 2 study of gemcitabine, paclitaxel protein-bound particles for injectable suspension, and placebo (GAP) versus gemcitabine, paclitaxel protein-bound particles for injectable suspension and either 1 or 2 trun. Annals of Oncology. https://doi.org/10.1093/annonc/mdx369.004.

  86. Artavanis-Tsakonas, S., Matsuno, K., & Fortini, M. E. (1995). Notch signaling. Science (80-.). https://doi.org/10.1126/science.7716513.

  87. Gangopadhyay, S., Nandy, A., Hor, P., & Mukhopadhyay, A. (2013). Breast cancer stem cells: A novel therapeutic target. Clinical Breast Cancer. https://doi.org/10.1016/j.clbc.2012.09.017.

  88. De Jesus-Acosta, A., et al. (2014). A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Investigational New Drugs, 32, 739, 745. https://doi.org/10.1007/s10637-014-0083-8.

    Article  CAS  Google Scholar 

  89. Bao, B., et al. (2011). Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Letters. https://doi.org/10.1016/j.canlet.2011.03.012.

  90. Xia, J., Duan, Q., Ahmad, A., Bao, B., Banerjee, S., Shi, Y., Ma, J., Geng, J., Chen, Z., Wahidur Rahman, K. M., Miele, L., H Sarkar, F., & Wang, Z. (2012). Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Current Drug Targets, 13, 1750–1756. https://doi.org/10.2174/138945012804545597.

    Article  CAS  PubMed  Google Scholar 

  91. Kallifatidis, G., et al. (2011). Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Molecular Therapy. https://doi.org/10.1038/mt.2010.216.

  92. Rausch, V., et al. (2010). Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-10-0066.

  93. Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling. https://doi.org/10.1126/scisignal.2005189.

  94. Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: New insights in signaling, development, and disease. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200601018.

  95. Modi, S., Kir, D., Banerjee, S., & Saluja, A. (2016). Control of apoptosis in treatment and biology of pancreatic cancer. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.25284.

  96. Van den broeck, A., et al. (2013). Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes. PLoS One. https://doi.org/10.1371/journal.pone.0073968.

  97. Chikazawa, N., et al. (2010). Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Research.

  98. Kikuchi, A., Yamamoto, H., Sato, A., & Matsumoto, S. (2011). New insights into the mechanism of Wnt signaling pathway activation. In International review of cell and molecular biology.

    Google Scholar 

  99. Krishnamurthy, N., & Kurzrock, R. (2018). Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treatment Reviews. https://doi.org/10.1016/j.ctrv.2017.11.002.

  100. Makena, M. R., Gatla, H., Verlekar, D., Sukhavasi, S., Pandey, M. K., & Pramanik, K. C. (2019). Wnt/β-catenin signaling: The culprit in pancreatic carcinogenesis and therapeutic resistance. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20174242.

  101. Messersmith, W., et al. (2016). Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with nab-paclitaxel (nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (PC). Annals of Oncology. https://doi.org/10.1093/annonc/mdw371.69.

  102. Weekes, C., et al. (2016). Phase 1b study of WNT inhibitor ipafricept (IPA, decoy receptor for WNT ligands) with nab-paclitaxel (nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (PC). Annals of Oncology. https://doi.org/10.1093/annonc/mdw368.10.

  103. Dotan, E., et al. (2019). Phase Ib study of WNT inhibitor ipafricept (IPA) with nab-paclitaxel (nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (mPC). Journal of Clinical Oncology. https://doi.org/10.1200/jco.2019.37.4_suppl.369.

  104. McWilliams, R. R., et al. (2015). A phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2015.33.15_suppl.e15270.

  105. Repasky, G. A., Chenette, E. J., & Der, C. J. (2004). Renewing the conspiracy theory debate: Does Raf function alone to mediate Ras oncogenesis? Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2004.09.014.

  106. Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of Ras mutations in cancer. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-11-2612.

  107. Jones, S., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science (80-. ). https://doi.org/10.1126/science.1164368.

  108. Raphael, B. J., et al. (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. https://doi.org/10.1016/j.ccell.2017.07.007.

  109. Biankin, A. V., et al. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. https://doi.org/10.1038/nature11547.

  110. Kraulis, P. J. (1991). MOLSCRIPT. A program to produce both detailed and schematic plots of protein structures. Journal of Applied Crystallography. https://doi.org/10.1107/s0021889891004399.

  111. Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nature Reviews Cancer. https://doi.org/10.1038/nrc2960.

  112. Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer. https://doi.org/10.1038/nrc969.

  113. Herreros-Villanueva, M., Hijona, E., Cosme, A., & Bujanda, L. (2012). Mouse models of pancreatic cancer. World Journal of Gastroenterology. https://doi.org/10.3748/wjg.v18.i12.1286.

  114. Papke, B., & Der, C. J. (2017). Drugging RAS: Know the enemy. Science. https://doi.org/10.1126/science.aam7622.

  115. Canon, J., et al. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. https://doi.org/10.1038/s41586-019-1694-1.

  116. D. S. Hong et al., “ KRAS G12C inhibition with sotorasib in advanced solid tumors ,” N. Engl. J. Med., 2020, doi: https://doi.org/10.1056/nejmoa1917239.

  117. Gort, E., et al. (2020). A phase I, open-label, dose-escalation trial of BI 1701963 as monotherapy and in combination with trametinib in patients with KRAS mutated advanced or metastatic solid tumors. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2020.38.15_suppl.tps3651.

  118. The Cancer Genome Atlas Research Network, & Raphael, B. J. (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma The Cancer Genome Atlas Research Network*. Cancer Cell.

  119. Jones, M. R., et al. (2019). NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-19-0191.

  120. Nevala-Plagemann, C., Hidalgo, M., & Garrido-Laguna, I. (2020). From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nature Reviews. Clinical Oncology. https://doi.org/10.1038/s41571-019-0281-6.

  121. Drilon, A., et al. (2018). Efficacy of Larotrectinib in TRK fusion–positive cancers in adults and children. The New England Journal of Medicine. https://doi.org/10.1056/nejmoa1714448.

  122. Pishvaian, M. J., Rolfo, C. D., Liu, S. V., Multani, P. S., Chow Maneval, E., & Garrido-Laguna, I. (2018). Clinical benefit of entrectinib for patients with metastatic pancreatic cancer who harbor NTRK and ROS1 fusions. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2018.36.4_suppl.521.

  123. Singhi, A. D., et al. (2017). Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. Journal of the National Comprehensive Cancer Network. https://doi.org/10.6004/jnccn.2017.0058.

  124. Tuli, R., et al. (2017). Anaplastic lymphoma kinase rearrangement and response to crizotinib in pancreatic ductal adenocarcinoma. JCO Precision Oncology. https://doi.org/10.1200/po.17.00016.

  125. Roskoski, R. (2010). RAF protein-serine/threonine kinases: Structure and regulation. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2010.07.092.

  126. Guan, M., et al. (2018). Molecular and clinical characterization of BRAF mutations in pancreatic ductal adenocarcinomas (PDACs). Journal of Clinical Oncology. https://doi.org/10.1200/jco.2018.36.4_suppl.214.

  127. Sala, E., Mologni, L., Truffa, S., Gaetano, C., Bollag, G. E., & Gambacorti-Passerini, C. (2008). BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-07-2001.

  128. Halaban, R., et al. (2010). PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells. Pigment Cell & Melanoma Research. https://doi.org/10.1111/j.1755-148X.2010.00685.x.

  129. Sullivan, R. J., & Flaherty, K. T. (2011). BRAF in melanoma: Pathogenesis, diagnosis, inhibition, and resistance. Journal of Skin Cancer. https://doi.org/10.1155/2011/423239.

  130. Gowrishankar, K., Snoyman, S., Pupo, G. M., Becker, T. M., Kefford, R. F., & Rizos, H. (2012). Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. The Journal of Investigative Dermatology. https://doi.org/10.1038/jid.2012.63.

  131. Aguirre, A. J., et al. (2018). Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discovery. https://doi.org/10.1158/2159-8290.CD-18-0275.

  132. Wrzeszczynski, K. O., et al. (2019). Identification of targetable BRAF Δn486_P490 variant by whole-genome sequencing leading to dabrafenib induced remission of a BRAF-mutant pancreatic adenocarcinoma. Cold Spring Harbor Molecular Case Studies. https://doi.org/10.1101/mcs.a004424.

  133. Busch, E., et al. (2020). Successful BRAF/MEK inhibition in a patient with BRAFV600E-mutated extrapancreatic acinar cell carcinoma. Cold Spring Harbor Molecular Case Studies. https://doi.org/10.1101/MCS.A005553.

  134. Falasca, M., Selvaggi, F., Buus, R., Sulpizio, S., & Edling, C. E. (2012). Targeting phosphoinositide 3-kinase pathways in pancreatic cancer – From molecular signalling to clinical trials. Anti-Cancer Agents in Medicinal Chemistry. https://doi.org/10.2174/187152011795677382.

  135. King, D., Yeomanson, D., & Bryant, H. E. (2015). PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. Journal of Pediatric Hematology/Oncology. https://doi.org/10.1097/MPH.0000000000000329.

  136. Mitsiades, C., Mitsiades, N., & Koutsilieris, M. (2005). The Akt pathway: Molecular targets for anti-cancer drug development. Current Cancer Drug Targets, 4, 235–256. https://doi.org/10.2174/1568009043333032.

    Article  Google Scholar 

  137. Garofalo, R. S., et al. (2003). Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI16885.

  138. Mitra, A., et al. (2015). Dual mTOR inhibition is required to prevent TGF-β-mediated fibrosis: Implications for scleroderma. Journal of Investigative Dermatology. https://doi.org/10.1038/jid.2015.252.

  139. O’Neil, B. H., et al. (2015). A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Annals of Oncology. https://doi.org/10.1093/annonc/mdv264.

  140. Bedard, P. L., et al. (2015). A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-14-1814.

  141. Owonikoko, T. K., et al. (2020). A phase I study of safety, pharmacokinetics, and pharmacodynamics of concurrent everolimus and buparlisib treatment in advanced solid tumors. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.ccr-19-2697.

  142. Javle, M. M., et al. (2010). Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: Results of two phase II studies. BMC Cancer. https://doi.org/10.1186/1471-2407-10-368.

  143. Kordes, S., Klümpen, H. J., Weterman, M. J., Schellens, J. H. M., Richel, D. J., & Wilmink, J. W. (2015). Phase II study of capecitabine and the oral mTOR inhibitor everolimus in patients with advanced pancreatic cancer. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-015-2730-y.

  144. Ichimaru, Y., et al. (2019). Indirubin 3′-oxime inhibits migration, invasion, and metastasis in vivo in mice bearing spontaneously occurring pancreatic cancer via blocking the RAF/ERK, AKT, and SAPK/JNK pathways. Translational Oncology. https://doi.org/10.1016/j.tranon.2019.08.010.

  145. Zhou, L., Jiao, X., Peng, X., Yao, X., Liu, L., & Zhang, L. (2020). MicroRNA-628-5p inhibits invasion and migration of human pancreatic ductal adenocarcinoma via suppression of the AKT/NF-kappa B pathway. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.29468.

  146. Elaskalani, O., Domenchini, A., Razak, N. B. A., Dye, D. E., Falasca, M., & Metharom, P. (2020). Antiplatelet drug ticagrelor enhances chemotherapeutic efficacy by targeting the novel P2Y12-AKT pathway in pancreatic cancer cells. Cancers (Basel). https://doi.org/10.3390/cancers12010250.

  147. Lan, C. Y., Chen, S. Y., Kuo, C. W., Lu, C. C., & Yen, G. C. (2019). Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2019.07.001.

  148. Zhou, H. Y., Yao, X. M., Chen, X. D., Tang, J. M., Qiao, Z. G., & Wu, X. Y. (2019). Mechanism of metformin enhancing the sensitivity of human pancreatic cancer cells to gem-citabine by regulating the PI3K/Akt/mTOR signaling pathway. European Review for Medical and Pharmacological Sciences. https://doi.org/10.26355/eurrev_201912_19666.

  149. Bodoky, G., Timcheva, C., Spigel, D. R., la Stella, P. J., Ciuleanu, T. E., Pover, G., & Tebbutt, N. C. (2012). A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investigational New Drugs, 30, 1216–1223. https://doi.org/10.1007/s10637-011-9687-4.

    Article  CAS  PubMed  Google Scholar 

  150. Ko, A. H., et al. (2013). Dual MEK/EGFR inhibition for advanced, chemotherapy-refractory pancreatic cancer: A multicenter phase II trial of selumetinib (AZD6244; ARRY-142886) plus erlotinib. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2013.31.15_suppl.4014.

  151. Infante, J. R., Somer, B. G., Park, J. O., Li, C. P., Scheulen, M. E., Kasubhai, S. M., Oh, D. Y., Liu, Y., Redhu, S., Steplewski, K., & le, N. (2014). A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. European Journal of Cancer, 50, 2072–2081. https://doi.org/10.1016/j.ejca.2014.04.024.

    Article  CAS  PubMed  Google Scholar 

  152. Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology. https://doi.org/10.1038/ncb2329.

  153. Egan, D. F., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (80-.). https://doi.org/10.1126/science.1196371.

  154. Vessoni, A. T., et al. (2016). Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress. Free Radical Biology & Medicine. https://doi.org/10.1016/j.freeradbiomed.2015.11.008.

  155. Boya, P., et al. (2003). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. https://doi.org/10.1038/sj.onc.1206622.

  156. Kinsey, C. G., et al. (2019). Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature Medicine. https://doi.org/10.1038/s41591-019-0367-9.

  157. Jiang, H., et al. (2018). Concurrent HER or PI3K inhibition potentiates the antitumor effect of the ERK inhibitor ulixertinib in preclinical pancreatic cancer models. Molecular Cancer Therapeutics. https://doi.org/10.1158/1535-7163.MCT-17-1142.

  158. Souchelnytskyi, S., Rönnstrand, L., Heldin, C. H., & ten Dijke, P. (2001). Phosphorylation of Smad signaling proteins by receptor serine/threonine kinases. Methods in Molecular Biology. https://doi.org/10.1385/1-59259-059-4:107.

  159. Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell. https://doi.org/10.1016/S0092-8674(00)00121-5.

  160. Wilentz, R. E., et al. (2000). Immunohistochemical labeling for Dpc4 mirrors genetic status in pancreatic adenocarcinomas: A new marker of DPC4 inactivation. The American Journal of Pathology. https://doi.org/10.1016/S0002-9440(10)64703-7.

  161. Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas. https://doi.org/10.1097/MPA.0b013e318247d6af.

  162. Sánchez-Elsner, T., Botella, L. M., Velasco, B., Corbí, A., Attisano, L., & Bernabéu, C. (2001). Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M104536200.

  163. Massagué, J. (2008). TGFβ in Cancer. Cell. https://doi.org/10.1016/j.cell.2008.07.001.

  164. Nemunaitis, J., et al. (2006). Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX® vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Therapy. https://doi.org/10.1038/sj.cgt.7700922.

  165. Trotta, R., et al. (2008). TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-γ production and antibody-dependent cellular cytotoxicity in human NK cells. Journal of Immunology. https://doi.org/10.4049/jimmunol.181.6.3784.

  166. Thomas, D. A., & Massagué, J. (2005). TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. https://doi.org/10.1016/j.ccr.2005.10.012.

  167. Wilson, E. B., et al. (2011). Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One. https://doi.org/10.1371/journal.pone.0022842.

  168. Hussussian, C. J., et al. (1994). Germline p16 mutations in familial melanoma. Nature Genetics. https://doi.org/10.1038/ng0994-15.

  169. Vasen, H. F. A., Gruis, N. A., Frants, R. R., Van Der Velden, P. A., Hille, E. T. M., & Bergman, W. (2000). Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). International Journal of Cancer, 87, 809–811. https://doi.org/10.1002/1097-0215(20000915)87:6<809::AID-IJC8>3.0.CO;2-U.

    Article  CAS  PubMed  Google Scholar 

  170. Tang, B., et al. (2015). Clinicopathological significance of CDKN2A promoter hypermethylation frequency with pancreatic cancer. Scientific Reports, (1), 1. https://doi.org/10.1038/srep13563.

  171. Finn, R. S., et al. (2016). Palbociclib and letrozole in advanced breast cancer. The New England Journal of Medicine, 1(1). https://doi.org/10.1056/NEJMoa1607303.

  172. Hortobagyi, G. N., et al. (2016). Ribociclib as first-line therapy for HR-positive, advanced breast cancer. The New England Journal of Medicine, 1(1). https://doi.org/10.1056/NEJMoa1609709.

  173. Sledge, G. W., et al. (2017). MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. Journal of Clinical Oncology, 1(1). https://doi.org/10.1200/JCO.2017.73.7585.

  174. Dhir, T., et al. (2019). Abemaciclib is effective against pancreatic cancer cells and synergizes with HuR and YAP1 inhibition. Molecular Cancer Research, 1, 1. https://doi.org/10.1158/1541-7786.MCR-19-0589.

    Article  Google Scholar 

  175. Abrams, S. L., et al. (2018). Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in Biological Regulation, 1, 1. https://doi.org/10.1016/j.jbior.2018.06.002.

    Article  CAS  Google Scholar 

  176. Clayman, G. L., et al. (1995). In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Research.

  177. Eastham, J. A., et al. (1995). In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Research, 1(1).

  178. Lesoon Wood, L. A., Kim, W., Kleinman, H. K., Weintraub, B. D., & Mixson, A. J. (1995). Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Human Gene Therapy, 1, 1. https://doi.org/10.1089/hum.1995.6.4-395.

    Article  Google Scholar 

  179. zhi Wu, S., et al. (2019). Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine, 1, 1. https://doi.org/10.1016/j.phymed.2019.152895.

    Article  CAS  Google Scholar 

  180. Stojanovic, N., et al. (2017). HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene, 1, 1. https://doi.org/10.1038/onc.2016.344.

    Article  CAS  Google Scholar 

  181. Münster, P., et al. (2007). Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: A clinical and translational study. Journal of Clinical Oncology, 1, 1. https://doi.org/10.1200/JCO.2006.08.6165.

    Article  CAS  Google Scholar 

  182. Pili, R., et al. (2012). Phase i study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. British Journal of Cancer. https://doi.org/10.1038/bjc.2011.527.

  183. Pauer, L. R., et al. (2004). Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Investigation. https://doi.org/10.1081/CNV-200039852.

  184. Richards, D. A., et al. (2006). Gemcitabine plus CI-994 offers no advantage over gemcitabine alone in the treatment of patients with advanced pancreatic cancer: Results of a phase II randomized, double-blind, placebo-controlled, multicenter study. Annals of Oncology. https://doi.org/10.1093/annonc/mdl081.

  185. Chan, E., et al. (2016). Phase i trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer. Radiotherapy and Oncology. https://doi.org/10.1016/j.radonc.2016.04.013.

  186. Hewish, M., Lord, C. J., Martin, S. A., Cunningham, D., & Ashworth, A. (2010). Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nature Reviews. Clinical Oncology. https://doi.org/10.1038/nrclinonc.2010.18.

  187. Le, D. T., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (80-.). https://doi.org/10.1126/science.aan6733.

  188. Hu, Z. I., et al. (2018). Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-17-3099.

  189. Humphris, J. L., et al. (2017). Hypermutation in pancreatic cancer. Gastroenterology. https://doi.org/10.1053/j.gastro.2016.09.060.

  190. Lupinacci, R. M., et al. (2018). Prevalence of microsatellite instability in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. https://doi.org/10.1053/j.gastro.2017.11.009.

  191. (2017). FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. Journal of Medical Case Reports. https://doi.org/10.31525/fda1-ucm560040.htm.

  192. Nakata, B., et al. (2002). Prognostic value of microsatellite instability in resectable pancreatic cancer. Clinical Cancer Research.

  193. Yamamoto, H., et al. (2001). Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Research.

  194. Nesselhut, J., et al. (2016). Systemic treatment with anti-PD-1 antibody nivolumab in combination with vaccine therapy in advanced pancreatic cancer. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2016.34.15_suppl.3092.

  195. Weiss, G. J., Blaydorn, L., Beck, J., Bornemann-Kolatzki, K., Urnovitz, H., Schütz, E., & Khemka, V. (2018). Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investigational New Drugs, 36, 96–102. https://doi.org/10.1007/s10637-017-0525-1.

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, J., & Walter, J. C. (2014). Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst). https://doi.org/10.1016/j.dnarep.2014.03.018.

  197. Klein, A. P. (2012). Genetic susceptibility to pancreatic cancer. Molecular Carcinogenesis. https://doi.org/10.1002/mc.20855.

  198. Holter, S., Borgida, A., Dodd, A., Grant, R., Semotiuk, K., Hedley, D., Dhani, N., Narod, S., Akbari, M., Moore, M., & Gallinger, S. (2015). Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. Journal of Clinical Oncology, 33, 3124–3129. https://doi.org/10.1200/JCO.2014.59.7401.

    Article  CAS  PubMed  Google Scholar 

  199. Venkitaraman, A. R. (2009). Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annual Review of Pathology: Mechanisms of Disease. https://doi.org/10.1146/annurev.pathol.3.121806.151422.

  200. Lowery, M. A., et al. (2011). An emerging entity: Pancreatic adenocarcinoma associated with a known BRCA mutation: Clinical descriptors, treatment implications, and future directions. Oncologist. https://doi.org/10.1634/theoncologist.2011-0185.

  201. (2019). FDA approves olaparib for gBRCAm metastatic pancreatic adenocarcinoma. Journal of Medical Case Reports. https://doi.org/10.31525/cmr-2590075.

  202. Oh, D.-Y., et al. (2019). Olaparib as maintenance treatment following first-line platinum-based chemotherapy (PBC) in patients (pts) with a germline BRCA mutation and metastatic pancreatic cancer (mPC): Phase III POLO trial. Annals of Oncology. https://doi.org/10.1093/annonc/mdz422.004.

  203. Binder KAR et al., “ Abstract CT234: A phase II, single arm study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic mutation in BRCA1, BRCA2 or PALB2 ,” 2019, https://doi.org/10.1158/1538-7445.am2019-ct234.

  204. Shroff, R. T., et al. (2018). Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precision Oncology. https://doi.org/10.1200/po.17.00316.

  205. Tuli, R., et al. (2019). A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine. https://doi.org/10.1016/j.ebiom.2018.12.060.

  206. Lowery, M. A., et al. (2018). Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. European Journal of Cancer. https://doi.org/10.1016/j.ejca.2017.11.004.

  207. Pishvaian, M. J., et al. (2019). Outcomes in patients with pancreatic adenocarcinoma with genetic mutations in DNA damage response pathways: Results from the know your tumor program. JCO Precision Oncology. https://doi.org/10.1200/po.19.00115.

  208. O’Kane, G. M., et al. (2020). Homologous recombination deficiency (HRD) scoring in pancreatic ductal adenocarcinoma (PDAC) and response to chemotherapy. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2020.38.4_suppl.741.

  209. O’Kane, G. M., et al. (2020). Outcomes and immunogenicity of pancreatic cancer stratified by the HRDetect score. Journal of Clinical Oncology. https://doi.org/10.1200/jco.2020.38.15_suppl.4630.

  210. Blackburn, E. H. (1994). Telomeres: No end in sight. Cell., 1, 1. https://doi.org/10.1016/0092-8674(94)90046-9.

    Article  Google Scholar 

  211. De Lange, T. (2002). Protection of mammalian telomeres. Oncogene., 1(1). https://doi.org/10.1038/sj/onc/1205080.

  212. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W., & Shay, J. W. (1996). Telomerase activity in human germline and embryonic tissues and cells. Developmental Genetics, 1, 1. https://doi.org/10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3.

    Article  Google Scholar 

  213. Shay, J. W., & Bacchetti, S. (1997). A survey of telomerase activity in human cancer. European Journal of Cancer Part A, 1, 1. https://doi.org/10.1016/S0959-8049(97)00062-2.

    Article  Google Scholar 

  214. Hiyama, E., et al. (1997). Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Research, 1, 1.

    Google Scholar 

  215. Harley, C. B. (2008). Telomerase and cancer therapeutics. Nature Reviews. Cancer, 1(1). https://doi.org/10.1038/nrc2275.

  216. Ouellette, M. M., Wright, W. E., & Shay, J. W. (2011). Targeting telomerase-expressing cancer cells. Journal of Cellular and Molecular Medicine, 1, 1. https://doi.org/10.1111/j.1582-4934.2011.01279.x.

    Article  CAS  Google Scholar 

  217. Blackburn, E. H., & Collins, K. (2011). Telomerase: An RNP enzyme synthesizes DNA. Cold Spring Harbor Perspectives in Biology, 1, 1. https://doi.org/10.1101/cshperspect.a003558.

    Article  CAS  Google Scholar 

  218. White, L. K., Wright, W. E., & Shay, J. W. (2001). Telomerase inhibitors. Trends in Biotechnology, 1, 1. https://doi.org/10.1016/S0167-7799(00)01541-9.

    Article  Google Scholar 

  219. Herbert, B. S., et al. (2005). Lipid modification of GRN163, an N3′→P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene, 1, 1. https://doi.org/10.1038/sj.onc.1208760.

    Article  CAS  Google Scholar 

  220. Burchett, K. M., Yan, Y., & Ouellette, M. M. (2014). Telomerase inhibitor Imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PLoS One, (1), 1. https://doi.org/10.1371/journal.pone.0085155.

  221. Choi, K. H., Farrell, A. S., Lakamp, A. S., & Ouellette, M. M. (2011). Characterization of the DNA binding specificity of Shelterin complexes. Nucleic Acids Research, 1, 1. https://doi.org/10.1093/nar/gkr665.

    Article  CAS  Google Scholar 

  222. Palm, W., & de Lange, T. (2008). How shelterin protects mammalian telomeres. Annual Review of Genetics, (1), 1. https://doi.org/10.1146/annurev.genet.41.110306.130350.

  223. Schreiber, V., Dantzer, F., Amé, J. C., & De Murcia, G. (2006). Poly(ADP-ribose): Novel functions for an old molecule. Nature Reviews. Molecular Cell Biology, 1, 1. https://doi.org/10.1038/nrm1963.

    Article  CAS  Google Scholar 

  224. Smith, S., Giriat, I., Schmitt, A., & De Lange, T. (1998). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science (80-.). https://doi.org/10.1126/science.282.5393.1484.

  225. Dantzer, F., et al. (2004). Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Molecular and Cellular Biology, 1, 1. https://doi.org/10.1128/mcb.24.4.1595-1607.2004.

    Article  Google Scholar 

  226. Gomez, M., Wu, J., Schreiber, V., Dunlap, J., Dantzer, F., Wang, Y., & Liu, Y. (2006). PARP1 is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Molecular Biology of the Cell, 17, 1686–1696. https://doi.org/10.1091/mbc.E05-07-0672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Beneke, S., Cohausz, O., Malanga, M., Boukamp, P., Althaus, F., & Bürkle, A. (2008). Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Research. https://doi.org/10.1093/nar/gkn615.

  228. Donà, F., et al. (2013). Poly(ADP-ribosylation) and neoplastic transformation: Effect of PARP inhibitors. Current Pharmaceutical Biotechnology. https://doi.org/10.2174/138920101405131111104642.

  229. Seimiya, H., Muramatsu, Y., Ohishi, T., & Tsuruo, T. (2005). Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell. https://doi.org/10.1016/j.ccr.2004.11.021.

  230. Burchett, K. M., Etekpo, A., Batra, S. K., Yan, Y., & Ouellette, M. M. (2017). Inhibitors of telomerase and poly(ADP-ribose) polymerases synergize to limit the lifespan of pancreatic cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.19410.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Diab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Areas covered

This review covers the molecular drivers in the cell and the cell membrane involved in the development and progression of PDAC and novel therapeutic agents targeting them.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Share, B., Hammad, N. & Diab, M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 40, 355–371 (2021). https://doi.org/10.1007/s10555-020-09948-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09948-w

Keywords

Navigation