Skip to main content

Advertisement

Log in

Beyond tradition and convention: benefits of non-traditional model organisms in cancer research

  • Non-Thematics Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590.

    Article  Google Scholar 

  2. Oppermann, H., Levinson, A. D., Varmus, H. E., Levintow, L., & Bishop, J. M. (1979). Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (Src). Proceedings of the National Academy of Sciences of the United States of America, 76(4), 1804–1808. https://doi.org/10.1073/pnas.76.4.1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Irby, R. B., & Yeatman, T. J. (2000). Role of Src expression and activation in human cancer. Oncogene, 19(49), 5636–5642. https://doi.org/10.1038/sj.onc.1203912.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss, R. A., & Vogt, P. K. (2011). 100 years of Rous sarcoma virus. The Journal of Experimental Medicine, 208(12), 2351–2355. https://doi.org/10.1084/jem.20112160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferreira, R., Limeta, A., & Nielsen, J. (2019). Tackling cancer with yeast-based technologies. Trends in Biotechnology, 37(6), 592–603. https://doi.org/10.1016/j.tibtech.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  6. Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 5(9), 726–734. https://doi.org/10.1038/nrc1692.

    Article  CAS  PubMed  Google Scholar 

  7. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation, 112(12), 1809–1820. https://doi.org/10.1172/JCI200320039.

    Article  CAS  PubMed Central  Google Scholar 

  8. Millburn, G. H., Crosby, M. A., Gramates, L. S., Tweedie, S., & the FlyBase Consortium. (2016). FlyBase portals to human disease research using Drosophila models. Disease Models & Mechanisms, 9(3), 245–252. https://doi.org/10.1242/dmm.023317.

    Article  CAS  Google Scholar 

  9. Sonoshita, M., & Cagan, R. L. (2017). Modeling human cancers in drosophila. Current Topics in Developmental Biology, 121, 287–309. https://doi.org/10.1016/bs.ctdb.2016.07.008.

    Article  CAS  PubMed  Google Scholar 

  10. Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (2019). Drosophila melanogaster: A model organism to study cancer. Frontiers in Genetics, 10, 51. https://doi.org/10.3389/fgene.2019.00051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirienko, N. V., Mani, K., & Fay, D. S. (2010). Cancer models in Caenorhabditis elegans. Developmental Dynamics, 239(5), 1413–1448. https://doi.org/10.1002/dvdy.22247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kyriakakis, E., Markaki, M., & Tavernarakis, N. (2015). Caenorhabditis elegans as a model for cancer research. Molecular & Cellular Oncology, 2(2), e975027. https://doi.org/10.4161/23723556.2014.975027.

    Article  CAS  Google Scholar 

  13. Chávez, M. N., Aedo, G., Fierro, F. A., Allende, M. L., & Egaña, J. T. (2016). Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Frontiers in Physiology, 7. https://doi.org/10.3389/fphys.2016.00056.

  14. Zhang, B., Shimada, Y., Kuroyanagi, J., Nishimura, Y., Umemoto, N., Nomoto, T., et al. (2014). Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35(12), 11861–11869. https://doi.org/10.1007/s13277-014-2417-8.

    Article  CAS  Google Scholar 

  15. Santoro, M. M. (2014). Antiangiogenic cancer drug using the zebrafish model. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(9), 1846–1853. https://doi.org/10.1161/ATVBAHA.114.303221.

    Article  CAS  PubMed  Google Scholar 

  16. Astin, J. W., & Crosier, P. S. (2016). Lymphatics, cancer and zebrafish. In D. M. Langenau (Ed.), Cancer and zebrafish (Vol. 916, pp. 199–218). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-30654-4_9.

    Chapter  Google Scholar 

  17. Chen, L., Groenewoud, A., Tulotta, C., Zoni, E., Kruithof-de Julio, M., van der Horst, G., et al. (2017). A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods in Cell Biology, 138, 471–496. https://doi.org/10.1016/bs.mcb.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  18. Deming, P., & Kornbluth, S. (2006). Study of apoptosis in vitro using the xenopus egg extract reconstitution system. In X. J. Liu (Ed.), Xenopus Protocols (Vol. 322, pp. 379–393). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-59745-000-3_27.

    Chapter  Google Scholar 

  19. Hardwick, L. J. A., & Philpott, A. (2018). Xenopus models of cancer: Expanding the oncologist’s toolbox. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01660.

  20. Hardwick, L. J. A., & Philpott, A. (2015). An oncologist′s friend: How Xenopus contributes to cancer research. Developmental Biology, 408(2), 180–187. https://doi.org/10.1016/j.ydbio.2015.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y., Yin, T., Feng, Y., Cona, M. M., Huang, G., Liu, J., et al. (2015). Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quantitative Imaging in Medicine and Surgery, 5(5), 708–729. https://doi.org/10.3978/j.issn.2223-4292.2015.06.01.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buqué, A., & Galluzzi, L. (2018). Modeling tumor immunology and immunotherapy in mice. Trends in Cancer, 4(9), 599–601. https://doi.org/10.1016/j.trecan.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  23. Cheon, D.-J., & Orsulic, S. (2011). Mouse models of cancer. Annual Review of Pathology, 6, 95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244.

    Article  CAS  PubMed  Google Scholar 

  24. Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., et al. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 514(7522), 380–384. https://doi.org/10.1038/nature13589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meek, S., Mashimo, T., & Burdon, T. (2017). From engineering to editing the rat genome. Mammalian Genome, 28(7), 302–314. https://doi.org/10.1007/s00335-017-9705-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lunardi, A., Nardella, C., Clohessy, J. G., & Pandolfi, P. P. (2014). Of model pets and cancer models: An introduction to mouse models of cancer. Cold Spring Harbor Protocols, 2014(1), 17–31. https://doi.org/10.1101/pdb.top069757.

    Article  PubMed  Google Scholar 

  27. Gómez-Cuadrado, L., Tracey, N., Ma, R., Qian, B., & Brunton, V. G. (2017). Mouse models of metastasis: Progress and prospects. Disease Models & Mechanisms, 10(9), 1061–1074. https://doi.org/10.1242/dmm.030403.

    Article  CAS  Google Scholar 

  28. Brown, H. K., Schiavone, K., Tazzyman, S., Heymann, D., & Chico, T. J. (2017). Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opinion on Drug Discovery, 12(4), 379–389. https://doi.org/10.1080/17460441.2017.1297416.

    Article  CAS  PubMed  Google Scholar 

  29. Harman, R. M., Curtis, T. M., Argyle, D. J., Coonrod, S. A., & Van de Walle, G. R. (2016). A comparative study on the in vitro effects of the DNA methyltransferase inhibitor 5-Azacytidine (5-AzaC) in breast/mammary cancer of different mammalian species. Journal of Mammary Gland Biology and Neoplasia, 1–6.

  30. Zhang, H., Pei, S., Zhou, B., Wang, H., Du, H., Zhang, D., & Lin, D. (2018). Establishment and characterization of a new triple-negative canine mammary cancer cell line. Tissue and Cell, 54, 10–19. https://doi.org/10.1016/j.tice.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  31. Hong, S. H., Kadosawa, T., Mochizuki, M., Matsunaga, S., Nishimura, R., & Sasaki, N. (1998). Establishment and characterization of two cell lines derived from canine spontaneous osteosarcoma. The Journal of Veterinary Medical Science, 60(6), 757–760. https://doi.org/10.1292/jvms.60.757.

    Article  CAS  PubMed  Google Scholar 

  32. Legare, M. E., Bush, J., Ashley, A. K., Kato, T., & Hanneman, W. H. (2011). Cellular and phenotypic characterization of canine osteosarcoma cell lines. Journal of Cancer, 2, 262–270. https://doi.org/10.7150/jca.2.262.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilson-Robles, H., Franks, K., Pool, R., & Miller, T. (2019). Characterization of five newly derived canine osteosarcoma cell lines. BMC Veterinary Research, 15(1), 357. https://doi.org/10.1186/s12917-019-2099-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nytko, K. J., Thumser-Henner, P., Weyland, M. S., Scheidegger, S., & Rohrer Bley, C. (2019). Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro. PLoS One, 14(5), e0216744. https://doi.org/10.1371/journal.pone.0216744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakaichi, M., Taura, Y., Kanki, M., Mamba, K., Momoi, Y., Tsujimoto, H., & Nakama, S. (1996). Establishment and characterization of a new canine B-cell leukemia cell line. The Journal of Veterinary Medical Science, 58(5), 469–471. https://doi.org/10.1292/jvms.58.469.

    Article  CAS  PubMed  Google Scholar 

  36. Momoi, Y., Okai, Y., Watari, T., Goitsuka, R., Tsujimoto, H., & Hasegawa, A. (1997). Establishment and characterization of a canine T-lymphoblastoid cell line derived from malignant lymphoma. Veterinary Immunology and Immunopathology, 59(1), 11–20. https://doi.org/10.1016/S0165-2427(97)00053-6.

    Article  CAS  PubMed  Google Scholar 

  37. Kisseberth, W. C., Nadella, M. V. P., Breen, M., Thomas, R., Duke, S. E., Murahari, S., et al. (2007). A novel canine lymphoma cell line: A translational and comparative model for lymphoma research. Leukemia Research, 31(12), 1709–1720. https://doi.org/10.1016/j.leukres.2007.04.003.

    Article  CAS  PubMed  Google Scholar 

  38. Rütgen, B. C., Hammer, S. E., Gerner, W., Christian, M., de Arespacochaga, A. G., Willmann, M., et al. (2010). Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma. Leukemia Research, 34(7), 932–938. https://doi.org/10.1016/j.leukres.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  39. Zwingenberger, A. L., Vernau, W., Shi, C., Yan, W., Chen, X., Gordon, I. K., & Kent, M. S. (2012). Development and characterization of 5 canine B-cell lymphoma cell lines. Leukemia Research, 36(5), 601–606. https://doi.org/10.1016/j.leukres.2011.11.004.

    Article  CAS  PubMed  Google Scholar 

  40. Umeki, S., Ema, Y., Suzuki, R., Kubo, M., Hayashi, T., Okamura, Y., et al. (2013). Establishment of five canine lymphoma cell lines and tumor formation in a xenotransplantation model. The Journal of Veterinary Medical Science, 75(4), 467–474. https://doi.org/10.1292/jvms.12-0448.

    Article  CAS  PubMed  Google Scholar 

  41. Bonnefont-Rebeix, C., Fournel-Fleury, C., Ponce, F., Belluco, S., Watrelot, D., Bouteille, S. E., et al. (2016). Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology. Immunobiology, 221(1), 12–22. https://doi.org/10.1016/j.imbio.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  42. Andrews, A., Wang, Z., Wilkinson, R., Fishman, J., Sachs, D., Navarro Alvarez, N., & Huang, C. (January 12). Development of transplantable B-cell lymphomas in the MHC-defined miniature swine model. Cancer Cell International, 19. https://doi.org/10.1186/s12935-019-0954-3.

  43. Rahe, M. C., Dvorak, C. M. T., Wiseman, B., Martin, D., & Murtaugh, M. P. (2020). Establishment and characterization of a porcine B cell lymphoma cell line. Experimental Cell Research, 390(2), 111986. https://doi.org/10.1016/j.yexcr.2020.111986.

    Article  CAS  PubMed  Google Scholar 

  44. Donninger, H., Hobbing, K., Schmidt, M. L., Walters, E., Rund, L., Schook, L., & Clark, G. J. (2015). A porcine model system of BRCA1 driven breast cancer. Frontiers in Genetics, 6, 269. https://doi.org/10.3389/fgene.2015.00269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowson-Hodel, A. R., Manjarin, R., Trott, J. F., Cardiff, R. D., Borowsky, A. D., & Hovey, R. C. (2015). Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. BMC Cancer, 15(1), 562. https://doi.org/10.1186/s12885-015-1572-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rauner, G., Ledet, M. M., & Van de Walle, G. R. (2018). Conserved and variable: Understanding mammary stem cells across species. Cytometry Part A, 93(1), 125–136. https://doi.org/10.1002/cyto.a.23190.

    Article  Google Scholar 

  47. Lai, C.-L., van den Ham, R., van Leenders, G., van der Lugt, J., Mol, J. A., & Teske, E. (2008). Histopathological and immunohistochemical characterization of canine prostate cancer. The Prostate, 68(5), 477–488. https://doi.org/10.1002/pros.20720.

    Article  PubMed  Google Scholar 

  48. Maya-Pulgarin, D., Gonzalez-Dominguez, M. S., Aranzazu-Taborda, D., Mendoza, N., & Maldonado-Estrada, J. G. (2017). Histopathologic findings in uteri and ovaries collected from clinically healthy dogs at elective ovariohysterectomy: A cross-sectional study. Journal of Veterinary Science, 18(3), 407–414. https://doi.org/10.4142/jvs.2017.18.3.407.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luu, A., Macdonald, R., Oblak, M., Brisson, B., & Viloria-Petit, A. (2018). Optimization of an explant culture model to characterize cancer-associated exosomes in canine osteosarcoma.

    Google Scholar 

  50. Brozyna, A., & Chwirot, B. W. (2006). Porcine skin as a model system for studies of ultraviolet a effects in human skin. Journal of Toxicology and Environmental Health, Part A, 69(12), 1155–1165. https://doi.org/10.1080/15287390500360323.

    Article  CAS  Google Scholar 

  51. Brożyna, A., Wasilewska, K., Węsierska, K., & Chwirot, B. W. (2009). Porcine skin as a model system for studies of adverse effects of narrow-band UVB pulses on human skin. Journal of Toxicology and Environmental Health, Part A, 72(13), 789–795. https://doi.org/10.1080/15287390902800363.

    Article  CAS  Google Scholar 

  52. Cousens, C., Alleaume, C., Bijsmans, E., Martineau, H. M., Finlayson, J., Dagleish, M. P., & Griffiths, D. J. (2015). Jaagsiekte sheep retrovirus infection of lung slice cultures. Retrovirology, 12, 31. https://doi.org/10.1186/s12977-015-0157-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cocola, C., Molgora, S., Piscitelli, E., Veronesi, M. C., Greco, M., Bragato, C., et al. (2017). FGF2 and EGF are required for self-renewal and organoid formation of canine normal and tumor breast stem cells. Journal of Cellular Biochemistry, 118(3), 570–584. https://doi.org/10.1002/jcb.25737.

    Article  CAS  PubMed  Google Scholar 

  54. Usui, T., Sakurai, M., Nishikawa, S., Umata, K., Nemoto, Y., Haraguchi, T., et al. (2017). Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells. Cancer Science, 108(12), 2383–2392. https://doi.org/10.1111/cas.13418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elbadawy, M., Usui, T., Mori, T., Tsunedomi, R., Hazama, S., Nabeta, R., et al. (2019). Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Science, 110(9), 2806–2821. https://doi.org/10.1111/cas.14118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chandra, L., Borcherding, D. C., Kingsbury, D., Atherly, T., Ambrosini, Y. M., Bourgois-Mochel, A., et al. (2019). Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 17(1), 33. https://doi.org/10.1186/s12915-019-0652-6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hassan, B. B., Elshafae, S. M., Supsavhad, W., Simmons, J. K., Dirksen, W. P., Sokkar, S. M., & Rosol, T. J. (2017). Feline mammary cancer: Novel nude mouse model and molecular characterization of invasion and metastasis genes. Veterinary Pathology, 54(1), 32–43. https://doi.org/10.1177/0300985816650243.

    Article  CAS  PubMed  Google Scholar 

  58. Ledet, M. M., Anderson, R., Harman, R., Muth, A., Thompson, P. R., Coonrod, S. A., & Van de Walle, G. R. (2018). BB-Cl-Amidine as a novel therapeutic for canine and feline mammary cancer via activation of the endoplasmic reticulum stress pathway. BMC Cancer, 18(1), 412. https://doi.org/10.1186/s12885-018-4323-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weiskopf, K., Anderson, K. L., Ito, D., Schnorr, P. J., Tomiyasu, H., Ring, A. M., et al. (2016). Eradication of canine diffuse large B-cell lymphoma in a murine xenograft model with CD47 blockade and anti-CD20. Cancer Immunology Research, 4(12), 1072. https://doi.org/10.1158/2326-6066.CIR-16-0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Im, K. S., Kim, J. H., Graef, A. J., Cornax, I., Seelig, D. M., O’Sullivan, M. G., et al. (2017). Establishment of a patient-derived xenograft of canine enteropathy-associated T-cell lymphoma, large cell type. Journal of Comparative Pathology, 156(1), 37–41. https://doi.org/10.1016/j.jcpa.2016.11.271.

    Article  CAS  PubMed  Google Scholar 

  61. Akhtar, N., Padilla, M. L., Dickerson, E. B., Steinberg, H., Breent, M., Auerbach, R., & Helfand, S. C. (2004). Interleukin-12 inhibits tumor growth in a novel angiogenesis canine hemangiosarcoma xenograft model. Neoplasia, 6(2), 106–116. https://doi.org/10.1593/neo.03334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boettcher, A. N., Kiupel, M., Adur, M. K., Cocco, E., Santin, A. D., Bellone, S., et al. (2019). Human ovarian cancer tumor formation in severe combined Immunodeficient (SCID) pigs. Frontiers in Oncology, 9, 9. https://doi.org/10.3389/fonc.2019.00009.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., et al. (2011). High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: Developing a pig model for breast cancer. Transgenic Research, 20(5), 975–988. https://doi.org/10.1007/s11248-010-9472-8.

    Article  CAS  PubMed  Google Scholar 

  64. Flisikowska, T., Merkl, C., Landmann, M., Eser, S., Rezaei, N., Cui, X., et al. (2012). A porcine model of familial adenomatous polyposis. Gastroenterology, 143(5), 1173–1175.e7. https://doi.org/10.1053/j.gastro.2012.07.110.

    Article  CAS  PubMed  Google Scholar 

  65. Flisikowska, T., Stachowiak, M., Xu, H., Wagner, A., Hernandez-Caceres, A., Wurmser, C., et al. (2017). Porcine familial adenomatous polyposis model enables systematic analysis of early events in adenoma progression. Scientific Reports, 7(1), 6613. https://doi.org/10.1038/s41598-017-06741-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Callesen, M. M., Árnadóttir, S. S., Lyskjaer, I., Ørntoft, M. W., Høyer, S., Dagnaes-Hansen, F., et al. (2017). A genetically inducible porcine model of intestinal cancer. Molecular Oncology, 11(11), 1616–1629. https://doi.org/10.1002/1878-0261.12136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leuchs, S., Saalfrank, A., Merkl, C., Flisikowska, T., Edlinger, M., Durkovic, M., et al. (2012). Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One, 7(10), e43323–e43323. https://doi.org/10.1371/journal.pone.0043323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sieren, J. C., Meyerholz, D. K., Wang, X.-J., Davis, B. T., Newell Jr., J. D., Hammond, E., et al. (February 9). Development and translational imaging of a TP53 porcine tumorigenesis model. The Journal of Clinical Investigation, 124(9), 4052–4066. https://doi.org/10.1172/JCI75447.

  69. Schook, L. B., Collares, T. V., Hu, W., Liang, Y., Rodrigues, F. M., Rund, L. A., et al. (2015). A genetic porcine model of cancer. PLoS One, 10(7), e0128864. https://doi.org/10.1371/journal.pone.0128864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schachtschneider, K. M., Schwind, R. M., Darfour-Oduro, K. A., De, A. K., Rund, L. A., Singh, K., et al. (2017). A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget, 8(38), 63620–63634. https://doi.org/10.18632/oncotarget.18872.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Principe, D. R., Overgaard, N. H., Park, A. J., Diaz, A. M., Torres, C., McKinney, R., et al. (2018). KRASG12D and tp53r167h cooperate to induce pancreatic ductal adenocarcinoma in sus scrofa pigs. Scientific Reports, 8(1), 12548. https://doi.org/10.1038/s41598-018-30916-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma, A., Benbrook, D. M., & Woo, S. (2018). Pharmacokinetics and interspecies scaling of a novel, orally-bioavailable anti-cancer drug, SHetA2. PLoS One, 13(4), e0194046. https://doi.org/10.1371/journal.pone.0194046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, C., Zhang, X., Wang, G., Peng, Y., Zhang, X., Wu, H., et al. (2018). Preclinical pharmacokinetics of C118P, a novel prodrug of microtubules inhibitor and its metabolite C118 in mice, rats, and dogs. Molecules (Basel, Switzerland), 23(11), 2883. https://doi.org/10.3390/molecules23112883.

    Article  CAS  Google Scholar 

  74. Weir, S. J., Wood, R., Schorno, K., Brinker, A. E., Ramamoorthy, P., Heppert, K., et al. (2019). Preclinical pharmacokinetics of Fosciclopirox, a novel treatment of Urothelial cancers, in rats and dogs. The Journal of Pharmacology and Experimental Therapeutics, 370(2), 148–159. https://doi.org/10.1124/jpet.119.257972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Panjwani, M. K., Smith, J. B., Schutsky, K., Gnanandarajah, J., O’Connor, C. M., Powell Jr., D. J., & Mason, N. J. (2016). Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Molecular Therapy, 24(9), 1602–1614. https://doi.org/10.1038/mt.2016.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mochel, J. P., Ekker, S. C., Johannes, C. M., Jergens, A. E., Allenspach, K., Bourgois-Mochel, A., et al. (2019). Car t cell immunotherapy in human and veterinary oncology: Changing the odds against hematological malignancies. The AAPS Journal, 21(3), 50. https://doi.org/10.1208/s12248-019-0322-1.

    Article  PubMed  Google Scholar 

  77. Chen, K., Huang, Y. H., & Chen, J. L. (2013). Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacologica Sinica, 34(6), 732–740. https://doi.org/10.1038/aps.2013.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rybicka, A., & Król, M. (2016). Identification and characterization of cancer stem cells in canine mammary tumors. Acta Veterinaria Scandinavica, 58(1), 86. https://doi.org/10.1186/s13028-016-0268-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spaas, J. H., Chiers, K., Bussche, L., Burvenich, C., & Van de Walle, G. R. (2012). Stem/progenitor cells in non-lactating versus lactating equine mammary gland. Stem Cells and Development, 21(16), 3055–3067. https://doi.org/10.1089/scd.2012.0042.

    Article  CAS  PubMed  Google Scholar 

  80. Borena, B. M., Bussche, L., Burvenich, C., Duchateau, L., & Van de Walle, G. R. (2013). Mammary stem cell research in veterinary science: An update. Stem Cells and Development, 22(12), 1743–1751. https://doi.org/10.1089/scd.2012.0677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bussche, L., Rauner, G., Antonyak, M., Syracuse, B., McDowell, M., Brown, A. M., et al. (2016). Microvesicle-mediated Wnt/β-catenin signaling promotes interspecies mammary stem/progenitor cell growth. The Journal of Biological Chemistry, 291(47), 24390–24405. https://doi.org/10.1074/jbc.M116.726117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stackhouse, C. T., Gillespie, G. Y., & Willey, C. D. (2019). Cancer Explant Models. Current Topics in Microbiology and Immunology. https://doi.org/10.1007/82_2019_157.

  83. Fatehullah, A., Tan, S. H., & Barker, N. (2016). Organoids as an in vitro model of human development and disease. Nature Cell Biology, 18(3), 246–254. https://doi.org/10.1038/ncb3312.

    Article  CAS  PubMed  Google Scholar 

  84. Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. London: Methuen & Co. Ltd..

    Google Scholar 

  85. Flisikowska, T., Kind, A., & Schnieke, A. (2016). Pigs as models of human cancers. Theriogenology, 86(1), 433–437. https://doi.org/10.1016/j.theriogenology.2016.04.058.

    Article  CAS  PubMed  Google Scholar 

  86. Perleberg, C., Kind, A., & Schnieke, A. (2018). Genetically engineered pigs as models for human disease. Disease Models & Mechanisms, 11(1). https://doi.org/10.1242/dmm.030783.

  87. Kalla, D., Kind, A., & Schnieke, A. (2020). Genetically engineered pigs to study Cancer. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020488.

  88. Wong, C. H., Siah, K. W., & Lo, A. W. (2019). Estimation of clinical trial success rates and related parameters. Biostatistics (Oxford, England), 20(2), 273–286. https://doi.org/10.1093/biostatistics/kxx069.

    Article  Google Scholar 

  89. Attarwala, H. (2010). TGN1412: From discovery to disaster. Journal of Young Pharmacists, 2(3), 332–336. https://doi.org/10.4103/0975-1483.66810.

    Article  CAS  PubMed  Google Scholar 

  90. Mak, I. W., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. American Journal of Translational Research, 6(2), 114–118.

    PubMed  PubMed Central  Google Scholar 

  91. Gardner, H. L., Fenger, J. M., & London, C. A. (2016). Dogs as a model for Cancer. Annual Review of Animal Biosciences, 4, 199–222. https://doi.org/10.1146/annurev-animal-022114-110911.

    Article  CAS  PubMed  Google Scholar 

  92. Tarone, L., Barutello, G., Iussich, S., Giacobino, D., Quaglino, E., Buracco, P., et al. (2019). Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunology, Immunotherapy, 68(11), 1839–1853. https://doi.org/10.1007/s00262-019-02360-6.

    Article  PubMed  Google Scholar 

  93. Duran-Struuck, R., Huang, C. A., & Matar, A. J. (2019). Cellular therapies for the treatment of hematological malignancies; swine are an ideal preclinical model. Frontiers in Oncology, 9, 418. https://doi.org/10.3389/fonc.2019.00418.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kabirov, K. K., Kapetanovic, I. M., Benbrook, D. M., Dinger, N., Mankovskaya, I., Zakharov, A., et al. (2013). Oral toxicity and pharmacokinetic studies of SHetA2, a new chemopreventive agent, in rats and dogs. Drug and Chemical Toxicology, 36(3), 284–295. https://doi.org/10.3109/01480545.2012.710632.

    Article  CAS  PubMed  Google Scholar 

  95. Feins, S., Kong, W., Williams, E. F., Milone, M. C., & Fraietta, J. A. (2019). An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. American Journal of Hematology, 94(S1), S3–s9. https://doi.org/10.1002/ajh.25418.

    Article  CAS  PubMed  Google Scholar 

  96. Ito, D., Frantz, A. M., & Modiano, J. F. (2014). Canine lymphoma as a comparative model for human non-Hodgkin lymphoma: Recent progress and applications. Veterinary Immunology and Immunopathology, 159(3), 192–201. https://doi.org/10.1016/j.vetimm.2014.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ostrander, E. A., Dreger, D. L., & Evans, J. M. (2019). Canine Cancer genomics: Lessons for canine and human health. Annual Review of Animal Biosciences, 7(1), 449–472. https://doi.org/10.1146/annurev-animal-030117-014523.

    Article  CAS  PubMed  Google Scholar 

  98. Abdelmegeed, S., & Mohammed, S. (2018). Canine mammary tumors as a model for human disease (review). Oncology Letters. https://doi.org/10.3892/ol.2018.8411.

  99. Rowell, J. L., McCarthy, D. O., & Alvarez, C. E. (2011). Dog models of naturally occurring cancer. Trends in Molecular Medicine, 17(7), 380–388. https://doi.org/10.1016/j.molmed.2011.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paoloni, M., & Khanna, C. (2008). Translation of new cancer treatments from pet dogs to humans. Nature Reviews Cancer, 8(2), 147–156. https://doi.org/10.1038/nrc2273.

    Article  CAS  PubMed  Google Scholar 

  101. Vilhena, H., Figueira, A. C., Schmitt, F., Canadas, A., Chaves, R., Gama, A., & Dias-Pereira, P. (2020). Canine and feline spontaneous mammary Tumours as models of human breast Cancer (pp. 173–207). https://doi.org/10.1007/978-3-030-30734-9_9.

  102. Galac, S., & Korpershoek, E. (2017). Pheochromocytomas and paragangliomas in humans and dogs: Pheochromocytomas and paragangliomas. Veterinary and Comparative Oncology, 15(4), 1158–1170. https://doi.org/10.1111/vco.12291.

    Article  CAS  PubMed  Google Scholar 

  103. Atherton, M. J., Morris, J. S., McDermott, M. R., & Lichty, B. D. (2016). Cancer immunology and canine malignant melanoma: A comparative review. Veterinary Immunology and Immunopathology, 169, 15–26. https://doi.org/10.1016/j.vetimm.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  104. Hicks, J., Platt, S., Kent, M., & Haley, A. (2017). Canine brain tumours: A model for the human disease? Canine brain tumours. Veterinary and Comparative Oncology, 15(1), 252–272. https://doi.org/10.1111/vco.12152.

    Article  CAS  PubMed  Google Scholar 

  105. Casal, M., & Haskins, M. (2006). Large animal models and gene therapy. European Journal of Human Genetics, 14(3), 266–272.

    Article  CAS  Google Scholar 

  106. Dhawan, D., Paoloni, M., Shukradas, S., Choudhury, D. R., Craig, B. A., Ramos-Vara, J. A., et al. (2015). Comparative gene expression analyses identify luminal and basal subtypes of canine invasive Urothelial carcinoma that mimic patterns in human invasive bladder Cancer. PLoS One, 10(9), e0136688. https://doi.org/10.1371/journal.pone.0136688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ranieri, G., Gadaleta, C. D., Patruno, R., Zizzo, N., Daidone, M. G., Hansson, M. G., et al. (2013). A model of study for human cancer: Spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Critical Reviews in Oncology/Hematology, 88(1), 187–197. https://doi.org/10.1016/j.critrevonc.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  108. Rusk, A., McKeegan, E., Haviv, F., Majest, S., Henkin, J., & Khanna, C. (2006). Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(24), 7444–7455. https://doi.org/10.1158/1078-0432.CCR-06-0109.

    Article  CAS  Google Scholar 

  109. Pryer, N. K., Lee, L. B., Zadovaskaya, R., Yu, X., Sukbuntherng, J., Cherrington, J. M., & London, C. A. (2003). Proof of target for SU11654: Inhibition of KIT phosphorylation in canine mast cell tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 9(15), 5729–5734.

    CAS  Google Scholar 

  110. London, C. A., Hannah, A. L., Zadovoskaya, R., Chien, M. B., Kollias-Baker, C., Rosenberg, M., et al. (2003). Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 9(7), 2755–2768.

    CAS  Google Scholar 

  111. Valli, V. E., Myint, M. S., Barthel, A., Bienzle, D., Caswell, J., Colbatzky, F., et al. (2011). Classification of canine malignant lymphomas according to the World Health Organization criteria. Veterinary Pathology, 48(1), 198–211. https://doi.org/10.1177/0300985810379428.

    Article  CAS  PubMed  Google Scholar 

  112. Patrick, D. J., Fitzgerald, S. D., Sesterhenn, I. A., Davis, C. J., & Kiupel, M. (2006). Classification of canine urinary bladder Urothelial Tumours based on the World Health Organization/International Society of Urological Pathology Consensus Classification. Journal of Comparative Pathology, 135(4), 190–199. https://doi.org/10.1016/j.jcpa.2006.07.002.

    Article  CAS  PubMed  Google Scholar 

  113. Horta, R. S., Lavalle, G. E., Monteiro, L. N., Souza, M. C. C., Cassali, G. D., & Araújo, R. B. (2018). Assessment of canine mast cell tumor mortality risk based on clinical, histologic, Immunohistochemical, and molecular features. Veterinary Pathology, 55(2), 212–223. https://doi.org/10.1177/0300985817747325.

    Article  PubMed  Google Scholar 

  114. Simpson, S., Dunning, M. D., de Brot, S., Grau-Roma, L., Mongan, N. P., & Rutland, C. S. (2017). Comparative review of human and canine osteosarcoma: Morphology, epidemiology, prognosis, treatment and genetics. Acta Veterinaria Scandinavica, 59(1), 71. https://doi.org/10.1186/s13028-017-0341-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Davis, B. W., & Ostrander, E. A. (2014). Domestic dogs and cancer research: A breed-based genomics approach. ILAR Journal, 55(1), 59–68. https://doi.org/10.1093/ilar/ilu017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jeffree, G. M., Price, C. H., & Sissons, H. A. (1975). The metastatic patterns of osteosarcoma. British Journal of Cancer, 32(1), 87–107. https://doi.org/10.1038/bjc.1975.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tabone, M. D., Kalifa, C., Rodary, C., Raquin, M., Valteau-Couanet, D., & Lemerle, J. (1994). Osteosarcoma recurrences in pediatric patients previously treated with intensive chemotherapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 12(12), 2614–2620. https://doi.org/10.1200/JCO.1994.12.12.2614.

    Article  CAS  Google Scholar 

  118. Saha, D., Saha, K., Banerjee, A., & Jash, D. (2013). Osteosarcoma relapse as pleural metastasis. South Asian Journal of Cancer, 2(2), 56. https://doi.org/10.4103/2278-330X.110483.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Richards, K. L., & Suter, S. E. (2015). Man’s best friend: What can pet dogs teach us about non-Hodgkin’s lymphoma? Immunological Reviews, 263(1), 173–191. https://doi.org/10.1111/imr.12238.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Krol, A. D. G., le Cessie, S., Snijder, S., Kluin-Nelemans, J. C., Kluin, P. M., & Noordijk, E. M. (2003). Primary extranodal non-Hodgkin’s lymphoma (NHL): The impact of alternative definitions tested in the comprehensive Cancer Centre west population-based NHL registry. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 14(1), 131–139. https://doi.org/10.1093/annonc/mdg004.

    Article  CAS  Google Scholar 

  121. Seo, K.-W., Choi, U.-S., Lee, J.-B., Kim, M.-I., Oh, Y.-I., Chung, J.-Y., et al. (2011). Central nervous system relapses in 3 dogs with B-cell lymphoma. The Canadian Veterinary Journal = La Revue Veterinaire Canadienne, 52(7), 778–783.

    PubMed  PubMed Central  Google Scholar 

  122. Gray, M., Meehan, J., Martínez-Pérez, C., Kay, C., Turnbull, A. K., Morrison, L. R., et al. (2020). Naturally-occurring canine mammary tumors as a translational model for human breast Cancer. Frontiers in Oncology, 10, 617. https://doi.org/10.3389/fonc.2020.00617.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Queiroga, F. L., Raposo, T., Carvalho, M. I., Prada, J., & Pires, I. (2011). Canine mammary tumours as a model to study human breast cancer: Most recent findings. In Vivo (Athens, Greece), 25(3), 455–465.

    Google Scholar 

  124. Sorenmo, K. (2003). Canine mammary gland tumors. Veterinary Clinics of North America: Small Animal Practice, 33(3), 573–596. https://doi.org/10.1016/S0195-5616(03)00020-2.

    Article  Google Scholar 

  125. Chocteau, F., Abadie, J., Loussouarn, D., & Nguyen, F. (2019). Proposal for a histological staging system of mammary carcinomas in dogs and cats. Part 1: Canine mammary carcinomas. Frontiers in Veterinary Science, 6, 388. https://doi.org/10.3389/fvets.2019.00388.

  126. Chocteau, F., Boulay, M.-M., Besnard, F., Valeau, G., Loussouarn, D., & Nguyen, F. (2019). Proposal for a histological staging system of mammary carcinomas in dogs and cats. Part 2: Feline mammary carcinomas. Frontiers in veterinary science, 6, 387. https://doi.org/10.3389/fvets.2019.00387.

  127. Moe, L. (2001). Population-based incidence of mammary tumours in some dog breeds. Journal of Reproduction and Fertility. Supplement, 57, 439–443.

    CAS  PubMed  Google Scholar 

  128. Weigelt, B., Peterse, J. L., & van ‘t Veer, L. J. (2005). Breast cancer metastasis: Markers and models. Nature reviews. Cancer, 5(8), 591–602. https://doi.org/10.1038/nrc1670.

    Article  CAS  PubMed  Google Scholar 

  129. Gundim, L. F., de Araújo, C. P., Blanca, W. T., Guimarães, E. C., & Medeiros, A. A. (2016). Clinical staging in bitches with mammary tumors: Influence of type and histological grade. Canadian Journal of Veterinary Research = Revue Canadienne De Recherche Veterinaire, 80(4), 318–322.

    PubMed  PubMed Central  Google Scholar 

  130. Bukowski, J. A., Wartenberg, D., & Goldschmidt, M. (1998). Environmental causes for sinonasal cancers in pet dogs, and their usefulness as sentinels of indoor cancer risk. Journal of toxicology and environmental health. Part A, 54(7), 579–591. https://doi.org/10.1080/009841098158719.

    Article  CAS  Google Scholar 

  131. Patronek, G. J., Waters, D. J., & Glickman, L. T. (1997). Comparative longevity of pet dogs and humans: Implications for gerontology research. The journals of gerontology. Series A, Biological Sciences and Medical Sciences, 52(3), B171–B178. https://doi.org/10.1093/gerona/52a.3.b171.

    Article  CAS  Google Scholar 

  132. Misdorp, W., & Hart, A. A. (1979). Canine mammary cancer. II. Therapy and causes of death. The Journal of Small Animal Practice, 20(7), 395–404. https://doi.org/10.1111/j.1748-5827.1979.tb06744.x.

    Article  CAS  PubMed  Google Scholar 

  133. Hayes, H. M., & Fraumeni, J. F. (1977). Epidemiological features of canine renal neoplasms. Cancer Research, 37(8 Pt 1), 2553–2556.

    PubMed  Google Scholar 

  134. Withrow, S. J., Vail, D. M., & Page, R. L. (Eds.). (2013). Withrow & MacEwen’s small animal clinical oncology (5th ed.). St. Louis, Missouri: Elsevier.

    Google Scholar 

  135. Caliari, D., Zappulli, V., Rasotto, R., Cardazzo, B., Frassineti, F., Goldschmidt, M. H., & Castagnaro, M. (2014). Triple-negative vimentin-positive heterogeneous feline mammary carcinomas as a potential comparative model for breast cancer. BMC Veterinary Research, 10(1), 185. https://doi.org/10.1186/s12917-014-0185-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. De Maria, R., Olivero, M., Iussich, S., Nakaichi, M., Murata, T., Biolatti, B., & Di Renzo, M. F. (2005). Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Research, 65(3), 907–912.

    PubMed  Google Scholar 

  137. Supsavhad, W., Dirksen, W. P., Martin, C. K., & Rosol, T. J. (2016). Animal models of head and neck squamous cell carcinoma. The Veterinary Journal, 210, 7–16. https://doi.org/10.1016/j.tvjl.2015.11.006.

    Article  PubMed  Google Scholar 

  138. Cannon, C. M. (2015). Cats, Cancer and comparative oncology. Veterinary sciences, 2(3), 111–126. https://doi.org/10.3390/vetsci2030111.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Weijer, K., Head, K. W., Misdorp, W., & Hampe, J. F. (1972). Feline malignant mammary tumors. I. Morphology and Biology: Some Comparisons With Human and Canine Mammary Carcinomas. JNCI: Journal of the National Cancer Institute, 49(6), 1697–1704. https://doi.org/10.1093/jnci/49.6.1697.

    Article  CAS  PubMed  Google Scholar 

  140. MacEwen, E. G. (1990). Spontaneous tumors in dogs and cats: Models for the study of cancer biology and treatment. Cancer and Metatasis Review, 9(2), 125–136. https://doi.org/10.1007/BF00046339.

    Article  CAS  Google Scholar 

  141. Murakami, Y., Tateyama, S., Rungsipipat, A., Uchida, K., & Yamaguchi, R. (2000). Immunohistochemical analysis of Cyclin a, Cyclin D1 and P53 in mammary tumors, squamous cell carcinomas and basal cell tumors of dogs and cats. Journal of Veterinary Medical Science, 62(7), 743–750. https://doi.org/10.1292/jvms.62.743.

    Article  CAS  Google Scholar 

  142. Murakami, Y., Tateyama, S., Rungsipipat, A., Uchida, K., & Yamaguchi, R. (2000). Amplification of the Cyclin a gene in canine and feline mammary tumors. Journal of Veterinary Medical Science, 62(7), 783–787. https://doi.org/10.1292/jvms.62.783.

    Article  CAS  Google Scholar 

  143. Snyder, L. A., Bertone, E. R., Jakowski, R. M., Dooner, M. S., Jennings-Ritchie, J., & Moore, A. S. (2004). p53 expression and environmental tobacco smoke exposure in feline Oral squamous cell carcinoma. Veterinary Pathology, 41(3), 209–214. https://doi.org/10.1354/vp.41-3-209.

    Article  CAS  PubMed  Google Scholar 

  144. Ballegeer, E. A., Madrill, N. J., Berger, K. L., Agnew, D. W., & McNiel, E. A. (2013). Evaluation of hypoxia in a feline model of head and neck cancer using 64Cu-ATSM positron emission tomography/computed tomography. BMC Cancer, 13(1), 218. https://doi.org/10.1186/1471-2407-13-218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rothenberg, S. M., & Ellisen, L. W. (2012). The molecular pathogenesis of head and neck squamous cell carcinoma. Journal of Clinical Investigation, 122(6), 1951–1957. https://doi.org/10.1172/JCI59889.

    Article  CAS  Google Scholar 

  146. Wing Yuen, P., Man, M., Yin Lam, K., & Lam Kwong, Y. (2002). Clinicopathological significance of p16 gene expression in the surgical treatment of head and neck squamous cell carcinomas. Journal of Clinical Pathology, 55(1), 58–60. https://doi.org/10.1136/jcp.55.1.58.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Munday, J. S., Knight, C. G., & French, A. F. (2011). Evaluation of feline oral squamous cell carcinomas for p16CDKN2A protein immunoreactivity and the presence of papillomaviral DNA. Research in Veterinary Science, 90(2), 280–283. https://doi.org/10.1016/j.rvsc.2010.06.014.

    Article  CAS  PubMed  Google Scholar 

  148. Rathore, K., Alexander, M., & Cekanova, M. (2014). Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro. Translational Research: The Journal of Laboratory and Clinical Medicine, 164(2), 158–168. https://doi.org/10.1016/j.trsl.2014.02.002.

    Article  CAS  Google Scholar 

  149. Ferrarotto, R., & Gold, K. A. (2014). Afatinib in the treatment of head and neck squamous cell carcinoma. Expert Opinion on Investigational Drugs, 23(1), 135–143. https://doi.org/10.1517/13543784.2014.858696.

    Article  CAS  PubMed  Google Scholar 

  150. Gardner, D. (2008). Spontaneous squamous cell carcinomas of the oral region in domestic animals: A review and consideration of their relevance to human research. Oral Diseases, 2(2), 148–154. https://doi.org/10.1111/j.1601-0825.1996.tb00216.x.

    Article  Google Scholar 

  151. Jimi, E., Shin, M., Furuta, H., Tada, Y., & Kusukawa, J. (2013). The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma. International Journal of Oncology, 42(3), 803–809. https://doi.org/10.3892/ijo.2013.1794.

    Article  CAS  PubMed  Google Scholar 

  152. Wypij, J. M. (2013). A naturally occurring feline model of Head and neck squamous cell carcinoma. Pathology Research International, 2013, 1–7. https://doi.org/10.1155/2013/502197.

    Article  Google Scholar 

  153. Soltero-Rivera, M. M., Krick, E. L., Reiter, A. M., Brown, D. C., & Lewis, J. R. (2014). Prevalence of regional and distant metastasis in cats with advanced oral squamous cell carcinoma: 49 cases (2005–2011). Journal of Feline Medicine and Surgery, 16(2), 164–169. https://doi.org/10.1177/1098612X13502975.

    Article  PubMed  Google Scholar 

  154. Genden, E. M., Ferlito, A., Bradley, P. J., Rinaldo, A., & Scully, C. (2003). Neck disease and distant metastases. Oral Oncology, 39(3), 207–212. https://doi.org/10.1016/S1368-8375(02)00049-0.

    Article  PubMed  Google Scholar 

  155. Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491(7424), 393–398. https://doi.org/10.1038/nature11622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arnold, C. R., Kloss, F., Singh, S., Vasiljevic, D., Stigler, R., Auberger, T., et al. (2017). A domestic porcine model for studying the effects of radiation on head and neck cancers. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 123(5), 536–543. https://doi.org/10.1016/j.oooo.2016.11.017.

    Article  PubMed  Google Scholar 

  157. Xu, J., Zheng, Z., Fang, D., Gao, R., Liu, Y., Fan, Z. P., et al. (2012). Early-stage pathogenic sequence of jaw osteoradionecrosis in vivo. Journal of Dental Research, 91(7), 702–708. https://doi.org/10.1177/0022034512448661.

    Article  CAS  PubMed  Google Scholar 

  158. Verdonck, H. W. D., Meijer, G. J., Laurin, T., Nieman, F. H., Stoll, C., Riediger, D., et al. (2008). Implant stability during osseointegration in irradiated and non-irradiated minipig alveolar bone: An experimental study. Clinical Oral Implants Research, 19(2), 201–206. https://doi.org/10.1111/j.1600-0501.2007.01457.x.

    Article  PubMed  Google Scholar 

  159. Overgaard, N. H., Frøsig, T. M., Welner, S., Rasmussen, M., Ilsøe, M., Sørensen, M. R., et al. (2015). Establishing the pig as a large animal model for vaccine development against human cancer. Frontiers in Genetics, 6. https://doi.org/10.3389/fgene.2015.00286.

  160. Youssef, G., Wallace, W. A. H., Dagleish, M. P., Cousens, C., & Griffiths, D. J. (2015). Ovine pulmonary adenocarcinoma: A large animal model for human lung Cancer. ILAR Journal, 56(1), 99–115. https://doi.org/10.1093/ilar/ilv014.

    Article  CAS  PubMed  Google Scholar 

  161. Perk, K., & Hod, I. (1982). Sheep lung carcinoma: An endemic analogue of a sporadic human neoplasm. Journal of the National Cancer Institute, 69(4), 747–749.

    CAS  PubMed  Google Scholar 

  162. Martin, W. B., Scott, F. M., Sharp, J. M., Angus, K. W., & Norval, M. (1976). Experimental production of sheep pulmonary adenomatosis (Jaagsiekte). Nature, 264(5582), 183–185. https://doi.org/10.1038/264183a0.

    Article  CAS  PubMed  Google Scholar 

  163. Sharp, J. M., Angus, K. W., Gray, E. W., & Scott, F. M. (1983). Rapid transmission of sheep pulmonary adenomatosis (jaagsiekte) in young lambs. Brief report. Archives of Virology, 78(1–2), 89–95. https://doi.org/10.1007/BF01310861.

    Article  CAS  PubMed  Google Scholar 

  164. Summers, C., Norval, M., De Las Heras, M., Gonzalez, L., Sharp, J. M., & Woods, G. M. (2005). An influx of macrophages is the predominant local immune response in ovine pulmonary adenocarcinoma. Veterinary Immunology and Immunopathology, 106(3–4), 285–294. https://doi.org/10.1016/j.vetimm.2005.03.006.

    Article  CAS  PubMed  Google Scholar 

  165. van der Weyden, L., Patton, E. E., Wood, G. A., Foote, A. K., Brenn, T., Arends, M. J., & Adams, D. J. (2016). Cross-species models of human melanoma: Cross-species models of human melanoma. The Journal of Pathology, 238(2), 152–165. https://doi.org/10.1002/path.4632.

    Article  PubMed  Google Scholar 

  166. Coricovac, D., Dehelean, C., Moaca, E.-A., Pinzaru, I., Bratu, T., Navolan, D., & Boruga, O. (2018). Cutaneous melanoma-a long road from experimental models to clinical outcome: A review. International Journal of Molecular Sciences, 19(6). https://doi.org/10.3390/ijms19061566.

  167. Valentine, B. A. (1995). Equine melanocytic tumors: A retrospective study of 53 horses (1988 to 1991). Journal of Veterinary Internal Medicine, 9(5), 291–297. https://doi.org/10.1111/j.1939-1676.1995.tb01087.x.

    Article  CAS  PubMed  Google Scholar 

  168. Smith, S. H., Goldschmidt, M. H., & McManus, P. M. (2002). A comparative review of melanocytic neoplasms. Veterinary Pathology, 39(6), 651–678. https://doi.org/10.1354/vp.39-6-651.

    Article  CAS  PubMed  Google Scholar 

  169. Schöniger, S., & Summers, B. A. (2009). Equine skin tumours in 20 horses resembling three variants of human melanocytic naevi. Veterinary Dermatology, 20(3), 165–173. https://doi.org/10.1111/j.1365-3164.2009.00741.x.

    Article  PubMed  Google Scholar 

  170. Rosengren Pielberg, G., Golovko, A., Sundström, E., Curik, I., Lennartsson, J., Seltenhammer, M. H., et al. (2008). A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 40(8), 1004–1009. https://doi.org/10.1038/ng.185.

    Article  CAS  PubMed  Google Scholar 

  171. Mohan, H. M., Aherne, C. M., Rogers, A. C., Baird, A. W., Winter, D. C., & Murphy, E. P. (2012). Molecular pathways: The role of NR4A orphan nuclear receptors in Cancer. Clinical Cancer Research, 18(12), 3223–3228. https://doi.org/10.1158/1078-0432.CCR-11-2953.

    Article  CAS  PubMed  Google Scholar 

  172. Maccioni, L., Rachakonda, P. S., Scherer, D., Bermejo, J. L., Planelles, D., Requena, C., et al. (2013). Variants at chromosome 20 (ASIP locus) and melanoma risk. International Journal of Cancer, 132(1), 42–54. https://doi.org/10.1002/ijc.27648.

    Article  CAS  PubMed  Google Scholar 

  173. MacGillivray, K. C., Sweeney, R. W., & Del Piero, F. (2002). Metastatic melanoma in horses. Journal of Veterinary Internal Medicine, 16(4), 452–456. https://doi.org/10.1892/0891-6640(2002)016<0452:mmih>2.3.co;2.

    Article  PubMed  Google Scholar 

  174. Suárez-Bonnet, A., Willis, C., Pittaway, R., Smith, K., Mair, T., & Priestnall, S. L. (2018). Molecular carcinogenesis in equine penile cancer: A potential animal model for human penile cancer. Urologic Oncology: Seminars and Original Investigations, 36(12), 532.e9–532.e18. https://doi.org/10.1016/j.urolonc.2018.09.004.

    Article  CAS  Google Scholar 

  175. Sykora, S., Jindra, C., Hofer, M., Steinborn, R., & Brandt, S. (2017) Equine papillomavirus type 2: An equine equivalent to human papillomavirus 16? Veterinary Journal (London, England 1997), 225, 3–8. https://doi.org/10.1016/j.tvjl.2017.04.014.

  176. Shabbir, M., Kayes, O., & Minhas, S. (2014). Challenges and controversies in the management of penile cancer. Nature reviews. Urology, 11(12), 702–711. https://doi.org/10.1038/nrurol.2014.307.

    Article  PubMed  Google Scholar 

  177. Johnson, P. A., & Giles, J. R. (2013). The hen as a model of ovarian cancer. Nature Reviews Cancer, 13(6), 432–436. https://doi.org/10.1038/nrc3535.

    Article  CAS  PubMed  Google Scholar 

  178. Urick, M. E., Giles, J. R., & Johnson, P. A. (2009). Dietary aspirin decreases the stage of ovarian cancer in the hen. Gynecologic Oncology, 112(1), 166–170. https://doi.org/10.1016/j.ygyno.2008.09.032.

    Article  CAS  PubMed  Google Scholar 

  179. Fredrickson, T. N. (1987). Ovarian tumors of the hen. Environmental Health Perspectives, 73, 35–51. https://doi.org/10.1289/ehp.877335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K., & Leung, P. C. (2001). Ovarian surface epithelium: Biology, endocrinology, and pathology. Endocrine Reviews, 22(2), 255–288. https://doi.org/10.1210/edrv.22.2.0422.

    Article  CAS  PubMed  Google Scholar 

  181. McCluggage, W. G. (2011). Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology, 43(5), 420–432. https://doi.org/10.1097/PAT.0b013e328348a6e7.

    Article  PubMed  Google Scholar 

  182. Ansenberger, K., Zhuge, Y., Lagman, J. A. J., Richards, C., Barua, A., Bahr, J. M., & Hales, D. B. (2009). E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecologic Oncology, 113(3), 362–369. https://doi.org/10.1016/j.ygyno.2009.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Urick, M. E., Giles, J. R., & Johnson, P. A. (2008). VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer. Gynecologic Oncology, 110(3), 418–424. https://doi.org/10.1016/j.ygyno.2008.05.018.

    Article  CAS  PubMed  Google Scholar 

  184. Rodríguez-Burford, C., Barnes, M. N., Berry, W., Partridge, E. E., & Grizzle, W. E. (2001). Immunohistochemical expression of molecular markers in an avian model: A potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecologic Oncology, 81(3), 373–379. https://doi.org/10.1006/gyno.2001.6191.

    Article  CAS  PubMed  Google Scholar 

  185. Hakim, A. A., Barry, C. P., Barnes, H. J., Anderson, K. E., Petitte, J., Whitaker, R., et al. (2009). Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras, and HER-2/neu. Cancer Prevention Research (Philadelphia, Pa.), 2(2), 114–121. https://doi.org/10.1158/1940-6207.CAPR-08-0065.

    Article  CAS  Google Scholar 

  186. Wernli, K. J., Newcomb, P. A., Hampton, J. M., Trentham-Dietz, A., & Egan, K. M. (2008). Inverse association of NSAID use and ovarian cancer in relation to oral contraceptive use and parity. British Journal of Cancer, 98(11), 1781–1783. https://doi.org/10.1038/sj.bjc.6604392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Barnes, M. N., Berry, W. D., Straughn, J. M. J., Kirby, T. O., Leath, C. A., Huh, W. K., et al. (2002). A pilot study of ovarian cancer chemoprevention using medroxyprogesterone acetate in an avian model of spontaneous ovarian carcinogenesis. Gynecologic Oncology, 87(1), 57–63. https://doi.org/10.1006/gyno.2002.6806.

    Article  CAS  PubMed  Google Scholar 

  188. Treviño, L. S., Buckles, E. L., & Johnson, P. A. (2012). Oral contraceptives decrease the prevalence of ovarian cancer in the hen. Cancer Prevention Research (Philadelphia, Pa.), 5(2), 343–349. https://doi.org/10.1158/1940-6207.CAPR-11-0344.

    Article  CAS  Google Scholar 

  189. Sueblinvong, T., & Carney, M. E. (2009). Current understanding of risk factors for ovarian cancer. Current Treatment Options in Oncology, 10(1–2), 67–81. https://doi.org/10.1007/s11864-009-0108-2.

    Article  PubMed  Google Scholar 

  190. Pal, P., Hales, K., Petrik, J., & Hales, D. B. (2019). Pro-apoptotic and anti-angiogenic actions of 2-methoxyestradiol and docosahexaenoic acid, the biologically derived active compounds from flaxseed diet, in preventing ovarian cancer. Journal of Ovarian Research, 12(1), 49. https://doi.org/10.1186/s13048-019-0523-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dikshit, A., Hales, K., & Hales, D. B. (2017). Whole flaxseed diet alters estrogen metabolism to promote 2-methoxtestradiol-induced apoptosis in hen ovarian cancer. The Journal of Nutritional Biochemistry, 42, 117–125. https://doi.org/10.1016/j.jnutbio.2017.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sahin, K., Yenice, E., Bilir, B., Orhan, C., Tuzcu, M., Sahin, N., et al. (2019). Genistein prevents development of spontaneous ovarian Cancer and inhibits tumor growth in hen model. Cancer Prevention Research, 12(3), 135–146. https://doi.org/10.1158/1940-6207.CAPR-17-0289.

    Article  CAS  PubMed  Google Scholar 

  193. Sahin, K., Yenice, E., Tuzcu, M., Orhan, C., Mizrak, C., Ozercan, I. H., et al. (2018). Lycopene protects against spontaneous ovarian cancer formation in laying hens. Journal of Cancer Prevention, (1), 23, 25–36. https://doi.org/10.15430/JCP.2018.23.1.25.

  194. Burrell, G. A., & Seibert, F. M. (1914). Experiments with small animals and carbon monoxide. Journal of Industrial & Engineering Chemistry, 6(3), 241–244. https://doi.org/10.1021/ie50063a027.

    Article  CAS  Google Scholar 

  195. Glantz, S. A. (1995). Passive smoking and heart disease. Mechanisms and risk. JAMA: The Journal of the American Medical Association, 273(13), 1047–1053. https://doi.org/10.1001/jama.273.13.1047.

    Article  CAS  PubMed  Google Scholar 

  196. Jaakkola, M., & Jakkola, J. (2002). Effects of environmental tobacco smoke on the respiratory health of adults. Scandinavian Journal of Work, Environment & Health, 28, 52–70.

    Google Scholar 

  197. Asomaning, K., Miller, D. P., Liu, G., Wain, J. C., Lynch, T. J., Su, L., & Christiani, D. C. (2008). Second hand smoke, age of exposure and lung cancer risk. Lung Cancer, 61(1), 13–20. https://doi.org/10.1016/j.lungcan.2007.11.013.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Reif, J. S., Dunn, K., Ogilvie, G. K., & Harris, C. K. (1992). Passive smoking and canine lung Cancer risk. American Journal of Epidemiology, 135(3), 234–239. https://doi.org/10.1093/oxfordjournals.aje.a116276.

    Article  CAS  PubMed  Google Scholar 

  199. Zierenberg-Ripoll, A., Pollard, R. E., Stewart, S. L., Allstadt, S. D., Barrett, L. E., Gillem, J. M., & Skorupski, K. A. (2018). Association between environmental factors including second-hand smoke and primary lung cancer in dogs: Tobacco smoke and lung cancer. Journal of Small Animal Practice, 59(6), 343–349. https://doi.org/10.1111/jsap.1277.8.

    Article  CAS  Google Scholar 

  200. Khuder, S. A. (2001). Effect of cigarette smoking on major histological types of lung cancer: A meta-analysis. Lung Cancer, 31(2–3), 139–148. https://doi.org/10.1016/S0169-5002(00)00181-1.

    Article  CAS  PubMed  Google Scholar 

  201. Ogilvie, G., Haschek, W., Withrow, S. J., Richardson, R., Harvey, H., Henderson, R., & Fowler, J. (1989). Classification of primary lung tumors in dogs: 210 cases (1975-1985). Journal of the Veterinary Medical Association, 195, 106–108.

    CAS  Google Scholar 

  202. Bertone, E. R., Snyder, L. A., & Moore, A. S. (2003). Environmental and lifestyle risk factors for oral squamous cell carcinoma in domestic cats. Journal of Veterinary Internal Medicine, 17(4), 557–562. https://doi.org/10.1111/j.1939-1676.2003.tb02478.x.

    Article  PubMed  Google Scholar 

  203. Hayes, H. M., Hoover, R., & Tarone, R. E. (1981). Bladder cancer in pet dogs: A sentinel for human cancer? American Journal of Epidemiology, 114(2), 229–233. https://doi.org/10.1093/oxfordjournals.aje.a113186.

    Article  PubMed  Google Scholar 

  204. Garbe, P. (1988). The companion animal as a sentinal for environmentally related human diseases. Acta Veterinaria Scandinavica. Supplementum, 84, 290–292.

    CAS  PubMed  Google Scholar 

  205. Glickman, L. T., Schofer, F. S., McKee, L. J., Reif, J. S., & Goldschmidt, M. H. (1989). Epidemiologic study of insecticide exposures, obesity, and risk of bladder cancer in household dogs. Journal of Toxicology and Environmental Health, 28(4), 407–414. https://doi.org/10.1080/15287398909531360.

    Article  CAS  PubMed  Google Scholar 

  206. Koutros, S., Silverman, D. T., Alavanja, M. C., Andreotti, G., Lerro, C. C., Heltshe, S., et al. (2016). Occupational exposure to pesticides and bladder cancer risk. International Journal of Epidemiology, 45(3), 792–805. https://doi.org/10.1093/ije/dyv195.

    Article  PubMed  Google Scholar 

  207. Liang, Z., Wang, X., Xie, B., Zhu, Y., Wu, J., Li, S., et al. (2016). Pesticide exposure and risk of bladder cancer: A meta-analysis. Oncotarget, 7(41), 66959–66969. https://doi.org/10.18632/oncotarget.11397.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kingsley, M. C. S. (1998). Population index estimates for the St. Lawrence belugas, 1973–1995. Marine Mammal Science, 14(3), 508–529. https://doi.org/10.1111/j.1748-7692.1998.tb00739.x.

    Article  Google Scholar 

  209. Martineau, D., Lemberger, K., Dallaire, A., Labelle, P., Lipscomb, T. P., Michel, P., & Mikaelian, I. (2002). Cancer in wildlife, a case study: Beluga from the St. Lawrence estuary, Québec, Canada. Environmental Health Perspectives, 110(3), 285–292. https://doi.org/10.1289/ehp.02110285.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Béland, P., DeGuise, S., Girard, C., Lagacé, A., Martineau, D., Michaud, R., et al. (1993). Toxic compounds and health and reproductive effects in St. Lawrence Beluga whales. Journal of Great Lakes Research, 19(4), 766–775. https://doi.org/10.1016/S0380-1330(93)71264-2.

    Article  Google Scholar 

  211. Lair, S., Measures, L. N., & Martineau, D. (2016). Pathologic findings and trends in mortality in the Beluga (Delphinapterus leucas ) population of the St Lawrence estuary, Quebec, Canada, from 1983 to 2012. Veterinary Pathology, 53(1), 22–36. https://doi.org/10.1177/0300985815604726.

    Article  CAS  PubMed  Google Scholar 

  212. Lesage, V., & Kingsley, M. (1998). Updated status of the St. Lawrence River population of the Beluga Delphinapterus leucas. Canadian Field-Naturalist, 112, 98–113.

    Google Scholar 

  213. Montiel-León, J. M., Munoz, G., Vo Duy, S., Do, D. T., Vaudreuil, M.-A., Goeury, K., et al. (2019). Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environmental Pollution, 250, 29–39. https://doi.org/10.1016/j.envpol.2019.03.125.

    Article  CAS  PubMed  Google Scholar 

  214. Montiel-León, J. M., Vo Duy, S., Munoz, G., Bouchard, M. F., Amyot, M., & Sauvé, S. (2019). Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. Science of the Total Environment, 671, 578–585. https://doi.org/10.1016/j.scitotenv.2019.03.228.

    Article  CAS  Google Scholar 

  215. Falkmer, S., Marklund, S., Mattsson, P. E., & Rappe, C. (1977). Hepatomas and other neoplasms in the Atlantic hagfish (Myxine Glutinosa): A Histopathologic and chemical study. Annals of the New York Academy of Sciences, 298(1 aquatic Pollu), 342–355. https://doi.org/10.1111/j.1749-6632.1977.tb19277.x.

    Article  CAS  Google Scholar 

  216. Falkmer, S. (1998). The tumour pathology of Myxine Glutinosa. In The biology of hagfishes (pp. 101–105). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-5834-3_7.

    Chapter  Google Scholar 

  217. Essack, S. Y. (2018). Environment: The neglected component of the one health triad. The Lancet Planetary Health, 2(6), e238–e239. https://doi.org/10.1016/S2542-5196(18)30124-4.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Harada, T., Takeda, M., Kojima, S., & Tomiyama, N. (2016). Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicological Research, 32(1), 21–33. https://doi.org/10.5487/TR.2016.32.1.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Abu-Helil, B., & van der Weyden, L. (2019). Metastasis in the wild: Investigating metastasis in non-laboratory animals. Clinical & Experimental Metastasis, 36(1), 15–28. https://doi.org/10.1007/s10585-019-09956-3.

    Article  Google Scholar 

  220. Yang, Z., Zhang, Y., & Chen, L. (2013). Investigation of anti-cancer mechanisms by comparative analysis of naked mole rat and rat. BMC Systems Biology, 7(Suppl 2), S5. https://doi.org/10.1186/1752-0509-7-S2-S5.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Schülke, S., Dreidax, D., Malik, A., Burmester, T., Nevo, E., Band, M., et al. (2012). Living with stress: Regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax. Gene, 500(2), 199–206. https://doi.org/10.1016/j.gene.2012.03.019.

    Article  CAS  PubMed  Google Scholar 

  222. Kshitiz, Afzal, J., Maziarz, J. D., Hamidzadeh, A., Liang, C., Erkenbrack, E. M., … Wagner, G. P. (2019). Evolution of placental invasion and cancer metastasis are causally linked. Nature Ecology & Evolution, 3(12), 1743–1753. https://doi.org/10.1038/s41559-019-1046-4.

  223. Defourny, S., Romanucci, M., Grieco, V., Quaglione, G., Santolini, C., & Della Salda, L. (2019). Tumor–microenvironment interaction: Analysis of mast cell populations in normal tissue and proliferative disorders of the canine prostate. Veterinary Sciences, 6(1), 16. https://doi.org/10.3390/vetsci6010016.

    Article  PubMed Central  Google Scholar 

  224. Carvalho, M. I., Silva-Carvalho, R., Pires, I., Prada, J., Bianchini, R., Jensen-Jarolim, E., & Queiroga, F. L. (2016). A comparative approach of tumor-associated inflammation in mammary Cancer between humans and dogs. BioMed Research International, 2016, 1–12. https://doi.org/10.1155/2016/4917387.

    Article  CAS  Google Scholar 

  225. Gorbunova, V., Seluanov, A., Zhang, Z., Gladyshev, V. N., & Vijg, J. (2014). Comparative genetics of longevity and cancer: Insights from long-lived rodents. Nature reviews. Genetics, 15(8), 531–540. https://doi.org/10.1038/nrg3728.

    Article  CAS  PubMed  Google Scholar 

  226. Ma, S., & Gladyshev, V. N. (2017). Molecular signatures of longevity: Insights from cross-species comparative studies. Seminars in Cell & Developmental Biology, 70, 190–203. https://doi.org/10.1016/j.semcdb.2017.08.007.

    Article  CAS  Google Scholar 

  227. Seluanov, A., Gladyshev, V. N., Vijg, J., & Gorbunova, V. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature reviews. Cancer, 18(7), 433–441. https://doi.org/10.1038/s41568-018-0004-9.

    Article  CAS  PubMed  Google Scholar 

  228. Tian, X., Azpurua, J., Hine, C., Vaidya, A., Myakishev-Rempel, M., Ablaeva, J., et al. (2013). High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature, 499(7458), 346–349. https://doi.org/10.1038/nature12234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Seluanov, A., Hine, C., Azpurua, J., Feigenson, M., Bozzella, M., Mao, Z., et al. (2009). Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proceedings of the National Academy of Sciences, 106(46), 19352. https://doi.org/10.1073/pnas.0905252106.

    Article  Google Scholar 

  230. Kurz, S., Thieme, R., Amberg, R., Groth, M., Jahnke, H.-G., Pieroh, P., et al. (2017). The anti-tumorigenic activity of A2M—A lesson from the naked mole-rat. PLoS One, 12(12). https://doi.org/10.1371/journal.pone.0189514.

  231. Zhao, Y., Tyshkovskiy, A., Muñoz-Espín, D., Tian, X., Serrano, M., de Magalhaes, J. P., et al. (2018). Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proceedings of the National Academy of Sciences, 115(8), 1801–1806. https://doi.org/10.1073/pnas.1721160115.

    Article  CAS  Google Scholar 

  232. Tan, L., Ke, Z., Tombline, G., Macoretta, N., Hayes, K., Tian, X., et al. (2017). Naked mole rat cells have a stable Epigenome that resists iPSC reprogramming. Stem Cell Reports, 9(5), 1721–1734. https://doi.org/10.1016/j.stemcr.2017.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Miyawaki, S., Kawamura, Y., Oiwa, Y., Shimizu, A., Hachiya, T., Bono, H., et al. (2016). Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nature Communications, 7(1), 11471. https://doi.org/10.1038/ncomms11471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. MacRae, S. L., Zhang, Q., Lemetre, C., Seim, I., Calder, R. B., Hoeijmakers, J., et al. (2015). Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell, 14(2), 288–291. https://doi.org/10.1111/acel.12314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kim, E. B., Fang, X., Fushan, A. A., Huang, Z., Lobanov, A. V., Han, L., et al. (2011). Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 479(7372), 223–227. https://doi.org/10.1038/nature10533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Evdokimov, A., Kutuzov, M., Petruseva, I., Lukjanchikova, N., Kashina, E., Kolova, E., et al. (2018). Naked mole rat cells display more efficient excision repair than mouse cells. Aging (Albany NY), 10(6), 1454–1473. https://doi.org/10.18632/aging.101482.

    Article  CAS  Google Scholar 

  237. Gorbunova, V., Hine, C., Tian, X., Ablaeva, J., Gudkov, A. V., Nevo, E., & Seluanov, A. (2012). Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19392–19396. https://doi.org/10.1073/pnas.1217211109.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Manov, I., Hirsh, M., Iancu, T. C., Malik, A., Sotnichenko, N., Band, M., et al. (2013). Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitroevidence. BMC Biology, 11(1), 91. https://doi.org/10.1186/1741-7007-11-91.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Nasser, N. J., Avivi, A., Shafat, I., Edovitsky, E., Zcharia, E., Ilan, N., et al. (2009). Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis. Proceedings of the National Academy of Sciences, 106(7), 2253–2258. https://doi.org/10.1073/pnas.0812846106.

    Article  Google Scholar 

  240. Abegglen, L. M., Caulin, A. F., Chan, A., Lee, K., Robinson, R., Campbell, M. S., et al. (2015). Potential mechanisms for Cancer resistance in elephants and comparative cellular response to DNA damage in humans. Jama, 314(17), 1850–1860. https://doi.org/10.1001/jama.2015.13134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sulak, M., Fong, L., Mika, K., Chigurupati, S., Yon, L., Mongan, N. P., … Lynch, V. J. (2016). TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife, 5, e11994. https://doi.org/10.7554/eLife.11994.

  242. Vazquez, J. M., Sulak, M., Chigurupati, S., & Lynch, V. J. (2018). A zombie LIF gene in elephants is Upregulated by TP53 to induce apoptosis in response to DNA damage. Cell Reports, 24(7), 1765–1776. https://doi.org/10.1016/j.celrep.2018.07.042.

    Article  CAS  PubMed  Google Scholar 

  243. Li, X., Caval, V., Wain-Hobson, S., & Vartanian, J.-P. (2019). Elephant APOBEC3A cytidine deaminase induces massive double-stranded DNA breaks and apoptosis. Scientific Reports, 9(1), 728. https://doi.org/10.1038/s41598-018-37305-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhao, M., Kim, P., Mitra, R., Zhao, J., & Zhao, Z. (2016). TSGene 2.0: An updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Research, 44(D1), D1023–D1031. https://doi.org/10.1093/nar/gkv1268.

    Article  CAS  PubMed  Google Scholar 

  245. Tollis, M., Robbins, J., Webb, A. E., Kuderna, L. F. K., Caulin, A. F., Garcia, J. D., et al. (2019). Return to the sea, get huge, beat Cancer: An analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae). Molecular Biology and Evolution, 36(8), 1746–1763. https://doi.org/10.1093/molbev/msz099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Brook, C. E., & Dobson, A. P. (2015). Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172–180. https://doi.org/10.1016/j.tim.2014.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Seim, I., Fang, X., Xiong, Z., Lobanov, A. V., Huang, Z., Ma, S., et al. (2013). Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nature Communications, 4, 2212. https://doi.org/10.1038/ncomms3212.

    Article  PubMed  PubMed Central  Google Scholar 

  248. David, A., Hwa, V., Metherell, L. A., Netchine, I., Camacho-Hübner, C., Clark, A. J. L., et al. (2011). Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocrine Reviews, 32(4), 472–497. https://doi.org/10.1210/er.2010-0023.

    Article  CAS  PubMed  Google Scholar 

  249. Werner, H., Lapkina-Gendler, L., Achlaug, L., Nagaraj, K., Somri, L., Yaron-Saminsky, D., et al. (2019). Genome-wide profiling of laron syndrome patients identifies novel cancer protection pathways. Cells, 8(6). https://doi.org/10.3390/cells8060596.

  250. Huang, Z., Jebb, D., & Teeling, E. C. (2016). Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genomics, 17(1), 906. https://doi.org/10.1186/s12864-016-3227-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Koh, J., Itahana, Y., Mendenhall, I. H., Low, D., Soh, E. X. Y., Guo, A. K., et al. (2019). ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nature Communications, 10(1), 2820. https://doi.org/10.1038/s41467-019-10495-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Seluanov, A., Hine, C., Bozzella, M., Hall, A., Sasahara, T. H. C., Ribeiro, A. A. C. M., et al. (2008). Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell, 7(6), 813–823. https://doi.org/10.1111/j.1474-9726.2008.00431.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Knight, C. H., & Sorensen, A. (2001). Windows in early mammary development: Critical or not? Reproduction (Cambridge, England), 122(3), 337–345. https://doi.org/10.1530/rep.0.1220337.

    Article  CAS  Google Scholar 

  254. Munson, L., & Moresco, A. (2007). Comparative pathology of mammary gland cancers in domestic and wild animals. Breast Disease, 28, 7–21. https://doi.org/10.3233/bd-2007-28102.

    Article  CAS  PubMed  Google Scholar 

  255. Ledet, M. M., Oswald, M., Anderson, R., & Van de Walle, G. R. (2018). Differential signaling pathway activation in 7,12-dimethylbenz[a] anthracene (DMBA)-treated mammary stem/progenitor cells from species with varying mammary cancer incidence. Oncotarget, 9(67), 32761–32774. https://doi.org/10.18632/oncotarget.25988.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Caulin, A. F., Graham, T. A., Wang, L.-S., & Maley, C. C. (2015). Solutions to Peto’s paradox revealed by mathematical modelling and cross-species cancer gene analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1673), 20140222.

    Article  Google Scholar 

  257. Nagy, J. D. (2005). The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity. Mathematical biosciences and engineering: MBE, 2(2), 381–418. https://doi.org/10.3934/mbe.2005.2.381.

    Article  PubMed  Google Scholar 

  258. Nagy, J. D., Victor, E. M., & Cropper, J. H. (2007). Why don’t all whales have cancer? A novel hypothesis resolving Peto’s paradox. Integrative and Comparative Biology, 47(2), 317–328. https://doi.org/10.1093/icb/icm062.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to authors whose work was not cited due to space limitations. We would like to acknowledge the Cornell Comparative Cancer Biology Training Program (CCBTP) for the support of our comparative studies.

Funding

This study received restricted funding to GRVdW for support of the comparative studies.

Author information

Authors and Affiliations

Authors

Contributions

RMH: conception and design and manuscript writing; SPD: conception and design and manuscript writing; APB: manuscript writing; GR: data generation for Fig. 1; LRD: manuscript writing; GRVdW: conception and design, editing, and approval of the final manuscript.

Corresponding author

Correspondence to Gerlinde R. Van de Walle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harman, R.M., Das, S.P., Bartlett, A.P. et al. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 40, 47–69 (2021). https://doi.org/10.1007/s10555-020-09930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09930-6

Keywords

Navigation