Skip to main content

Advertisement

Log in

Caveolin-1, a master regulator of cellular senescence

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell’s microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10–15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Palade, G. E. (1953). The fine structure of blood capillaries. Journal of Applied Physics, 24, 1424.

    Google Scholar 

  2. Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. The Journal of Biophysical and Biochemical Cytology, 1, 445–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 120(4), 513–522.

    CAS  PubMed  Google Scholar 

  4. Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75, 685–705. https://doi.org/10.1146/annurev-physiol-030212-183653.

    Article  CAS  PubMed  Google Scholar 

  5. Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. The Journal of Cell Biology, 192(4), 547–556. https://doi.org/10.1083/jcb.201009094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P., & Lisanti, M. P. (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. The Journal of Biological Chemistry, 272, 29337–29346.

    CAS  PubMed  Google Scholar 

  8. Pike, L. J. (2006). Rafts defined: a report on the keystone symposium on lipid rafts and cell function. Journal of Lipid Research, 47(7), 1597–1598. https://doi.org/10.1194/jlr.E600002-JLR200.

    Article  CAS  PubMed  Google Scholar 

  9. Gambin, Y., Ariotti, N., McMahon, K. A., Bastiani, M., Sierecki, E., Kovtun, O., et al. (2013). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. Elife, 3, e01434. https://doi.org/10.7554/eLife.01434.

    Article  PubMed  Google Scholar 

  10. Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic, 11(3), 361–382. https://doi.org/10.1111/j.1600-0854.2009.01023.x.

    Article  CAS  PubMed  Google Scholar 

  11. Couet, J., Li., S., Okamoto, T., Ikezu, T., & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. The Journal of Biological Chemistry, 272, 6525–6533.

  12. Jagannadham, M. V., Sharadadevi, A., & Nagaraj, R. (2002). Effects of deleting a tripeptide sequence observed in muscular dystrophy patients on the conformation of synthetic peptides corresponding to the scaffolding domain of caveolin-3. Biochemical and Biophysical Research Communications, 298(2), 203–206.

    CAS  PubMed  Google Scholar 

  13. Song, K. S., Tang, Z.-L., Li, S., & Lisanti, M. P. (1997). Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homotypic caveolin-caveolin interactions. The Journal of Biological Chemistry, 272, 4398–4403.

    CAS  PubMed  Google Scholar 

  14. Sonnino, S., & Prinetti, A. (2009). Sphingolipids and membrane environments for caveolin. FEBS Letters, 583(4), 597–606.

    CAS  PubMed  Google Scholar 

  15. Lisanti, M. P., Scherer, P., Tang, Z.-L., & Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in Cell Biology, 4, 231–235.

    CAS  PubMed  Google Scholar 

  16. Song, K. S., Li, S., Okamoto, T., Quilliam, L., Sargiacomo, M., & Lisanti, M. P. (1996). Copurification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent free purification of caveolae membranes. The Journal of Biological Chemistry, 271, 9690–9697.

    CAS  PubMed  Google Scholar 

  17. Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. W. (1996). Localization of EGF-stimulated Ras/Raf-1 interaction to caveolae membrane. The Journal of Biological Chemistry, 271, 11930–11935.

    CAS  PubMed  Google Scholar 

  18. Liu, P., Ying, Y., & Anderson, R. G. (1997). Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13666–13670.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., & Lisanti, M. P. (1995). Evidence for a regulated interaction of hetero-trimeric G proteins with caveolin. The Journal of Biological Chemistry, 270, 15693–15701.

    CAS  PubMed  Google Scholar 

  20. Li, S., Couet, J., & Lisanti, M. P. (1996). Src tyrosine kinases, G alpha subunits and H-Ras share a common membrane-anchored scaffolding protein, Caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. The Journal of Biological Chemistry, 271, 29182–29190.

    CAS  PubMed  Google Scholar 

  21. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C., & Lublin, D. M. (1994). Cysteine-3 of Src family tyrosine kinases determines palmitoylation and localization in caveolae. Journal of Cell Biology, 126, 353–363.

    CAS  PubMed  Google Scholar 

  22. Smart, E. J., Foster, D., Ying, Y.-S., Kamen, B. A., & Anderson, R. G. W. (1993). Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. The Journal of Cell Biology, 124, 307–313.

    Google Scholar 

  23. Schnitzer, J. E., Liu, J., & Oh, P. (1995). Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. The Journal of Biological Chemistry, 270, 14399–14404.

    CAS  PubMed  Google Scholar 

  24. Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. The Journal of Biological Chemistry, 272, 30429–30438.

    CAS  PubMed  Google Scholar 

  25. Ju, H., Zou, R., Venema, V. J., & Venema, R. C. (1997). Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. The Journal of Biological Chemistry, 272(30), 18522–18525.

    CAS  PubMed  Google Scholar 

  26. Feron, O., Belhassen, L., Kobzik, L., Smith, T. W., Kelly, R. A., & Michel, T. (1996). Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. The Journal of Biological Chemistry, 271(37), 22810–22814.

    CAS  PubMed  Google Scholar 

  27. Segal, S. S., Brett, S. E., & Sessa, W. C. (1999). Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. The American Journal of Physiology, 277(3 Pt 2), H1167–H1177.

    CAS  PubMed  Google Scholar 

  28. Saltiel, A. R., & Pessin, J. E. (2003). Insulin signaling in microdomains of the plasma membrane. Traffic, 4(11), 711–716. https://doi.org/10.1034/j.1600-0854.2003.00119.x.

    Article  CAS  PubMed  Google Scholar 

  29. Galbiati, F., Razani, B., & Lisanti, M. P. (2001). Emerging themes in lipid rafts and caveolae. Cell, 106(4), 403–411.

    CAS  PubMed  Google Scholar 

  30. Galbiati, F., Razani, B., & Lisanti, M. P. (2001). Caveolae and caveolin-3 in muscular dystrophy. Trends in Molecular Medicine, 7(10), 435–441.

    CAS  PubMed  Google Scholar 

  31. Parton, R. G., & Richards, A. A. (2003). Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic, 4(11), 724–738.

    CAS  PubMed  Google Scholar 

  32. Razani, B., Schlegel, A., & Lisanti, M. P. (2000). Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. Journal of Cell Science, 113(Pt 12), 2103–2109.

    CAS  PubMed  Google Scholar 

  33. Williams, T. M., & Lisanti, M. P. (2004). The Caveolin genes: from cell biology to medicine. Annals of Medicine, 36(8), 584–595.

    CAS  PubMed  Google Scholar 

  34. Watanabe, M., Yang, G., Cao, G., Tahir, S. A., Naruishi, K., Tabata, K., Fattah, E. A., Rajagopalan, K., Timme, T. L., Park, S., Kurosaka, S., Edamura, K., Tanimoto, R., Demayo, F. J., Goltsov, A. A., & Thompson, T. C. (2009). Functional analysis of secreted caveolin-1 in mouse models of prostate cancer progression. Molecular Cancer Research, 7(9), 1446–1455.

    CAS  PubMed  Google Scholar 

  35. Williams, T. M., Hassan, G. S., Li, J., Cohen, A. W., Medina, F., Frank, P. G., Pestell, R. G., di Vizio, D., Loda, M., & Lisanti, M. P. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. The Journal of Biological Chemistry, 280(26), 25134–25145.

    CAS  PubMed  Google Scholar 

  36. Capozza, F., Williams, T. M., Schubert, W., McClain, S., Bouzahzah, B., Sotgia, F., & Lisanti, M. P. (2003). Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. The American Journal of Pathology, 162(6), 2029–2039.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Razani, B., Combs, T. P., Wang, X. B., Frank, P. G., Park, D. S., Russell, R. G., Li, M., Tang, B., Jelicks, L. A., Scherer, P. E., & Lisanti, M. P. (2002). Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. The Journal of Biological Chemistry, 277(10), 8635–8647.

    CAS  PubMed  Google Scholar 

  38. Razani, B., Engelman, J. A., Wang, X. B., Schubert, W., Zhang, X. L., Marks, C. B., et al. (2001). Caveolin-1 null mice are viable, but show evidence of hyper-proliferative and vascular abnormalities. The Journal of Biological Chemistry, 276(41), 38121–38138.

  39. Williams, T. M., Lee, H., Cheung, M. W., Cohen, A. W., Razani, B., Iyengar, P., Scherer, P. E., Pestell, R. G., & Lisanti, M. P. (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. The Journal of Biological Chemistry, 279(23), 24745–24756. https://doi.org/10.1074/jbc.M402064200.

    Article  CAS  PubMed  Google Scholar 

  40. Austin, E. D., Ma, L., LeDuc, C., Berman Rosenzweig, E., Borczuk, A., Phillips 3rd, J. A., et al. (2012). Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circulation. Cardiovascular Genetics, 5(3), 336–343. https://doi.org/10.1161/CIRCGENETICS.111.961888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, H., Alston, L., Ruschman, J., & Hegele, R. A. (2008). Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids in Health and Disease, 7, 3. https://doi.org/10.1186/1476-511X-7-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han, S. E., Park, K. H., Lee, G., Huh, Y. J., & Min, B. M. (2004). Mutation and aberrant expression of Caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. International Journal of Oncology, 24(2), 435–440.

    CAS  PubMed  Google Scholar 

  43. Li, T., Sotgia, F., Vuolo, M. A., Li, M., Yang, W. C., Pestell, R. G., Sparano, J. A., & Lisanti, M. P. (2006). Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. The American Journal of Pathology, 168(6), 1998–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Patani, N., Lambros, M. B., Natrajan, R., Dedes, K. J., Geyer, F. C., Ward, E., Martin, L. A., Dowsett, M., & Reis-Filho, J. S. (2012). Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Research and Treatment, 131(1), 307–310. https://doi.org/10.1007/s10549-011-1761-2.

    Article  CAS  PubMed  Google Scholar 

  45. Lundberg, A. S., Hahn, W. C., Gupta, P., & Weinberg, R. A. (2000). Genes involved in senescence and immortalization. Current Opinion in Cell Biology, 12(6), 705–709.

    CAS  PubMed  Google Scholar 

  46. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., & Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Black, E. J., Clark, W., & Gillespie, D. A. (2000). Transient deactivation of ERK signalling is sufficient for stable entry into G0 in primary avian fibroblasts. Current Biology, 10(18), 1119–1122.

    CAS  PubMed  Google Scholar 

  48. Sherr, C. J., & DePinho, R. A. (2000). Cellular senescence: mitotic clock or culture shock? Cell, 102(4), 407–410.

    CAS  PubMed  Google Scholar 

  49. Wynford-Thomas, D. (1999). Cellular senescence and cancer. The Journal of Pathology, 187(1), 100–111.

    CAS  PubMed  Google Scholar 

  50. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., & Shay, J. W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266(5193), 2011–2015.

    CAS  PubMed  Google Scholar 

  51. Lee, S. W., Reimer, C. L., Oh, P., Campbel, I. D. B., & Schnitzer, J. E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16, 1391–1397.

    CAS  PubMed  Google Scholar 

  52. Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.

    CAS  PubMed  Google Scholar 

  53. Cristofalo, V. J., Phillips, P. D., Sorger, T., & Gerhard, G. (1989). Alterations in the responsiveness of senescent cells to growth factors. Journal of Gerontology, 44(6), 55–62.

    CAS  PubMed  Google Scholar 

  54. Wang, E. (1995). Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Research, 55(11), 2284–2292.

    CAS  PubMed  Google Scholar 

  55. Matsumura, T., Zerrudo, Z., & Hayflick, L. (1979). Senescent human diploid cells in culture: survival, DNA synthesis and morphology. Journal of Gerontology, 34(3), 328–334.

    CAS  PubMed  Google Scholar 

  56. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., & Wright, W. E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279(5349), 349–352.

    CAS  PubMed  Google Scholar 

  57. Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458–460.

    CAS  PubMed  Google Scholar 

  58. Lansdorp, P. M. (2000). Repair of telomeric DNA prior to replicative senescence. Mechanisms of Ageing and Development, 118(1–2), 23–34.

    CAS  PubMed  Google Scholar 

  59. Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor, C., & Lansdorp, P. M. (2000). Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Experimental Cell Research, 256(1), 291–299.

    CAS  PubMed  Google Scholar 

  60. Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J., & Ames, B. N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proceedings of the National Academy of Sciences of the United States of America, 92(10), 4337–4341.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Frippiat, C., Chen, Q. M., Zdanov, S., Magalhaes, J. P., Remacle, J., & Toussaint, O. (2001). Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. The Journal of Biological Chemistry, 276(4), 2531–2537.

    CAS  PubMed  Google Scholar 

  62. Robles, S. J., & Adami, G. R. (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene, 16(9), 1113–1123.

    CAS  PubMed  Google Scholar 

  63. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602.

    CAS  PubMed  Google Scholar 

  64. Zhu, J., Woods, D., McMahon, M., & Bishop, J. M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes & Development, 12(19), 2997–3007.

    CAS  Google Scholar 

  65. Hewitt, G., Jurk, D., Marques, F. D., Correia-Melo, C., Hardy, T., Gackowska, A., Anderson, R., Taschuk, M., Mann, J., & Passos, J. F. (2012). Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 3, 708. https://doi.org/10.1038/ncomms1708.

    Article  CAS  PubMed  Google Scholar 

  66. Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703–716. https://doi.org/10.1016/s0092-8674(03)00401-x.

    Article  CAS  PubMed  Google Scholar 

  67. Shimi, T., Butin-Israeli, V., Adam, S. A., Hamanaka, R. B., Goldman, A. E., Lucas, C. A., Shumaker, D. K., Kosak, S. T., Chandel, N. S., & Goldman, R. D. (2011). The role of nuclear lamin B1 in cell proliferation and senescence. Genes & Development, 25(24), 2579–2593. https://doi.org/10.1101/gad.179515.111.

    Article  CAS  Google Scholar 

  68. Georgakopoulou, E. A., Tsimaratou, K., Evangelou, K., Fernandez Marcos, P. J., Zoumpourlis, V., Trougakos, I. P., et al. (2013). Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY), 5(1), 37–50. https://doi.org/10.18632/aging.100527.

    Article  CAS  Google Scholar 

  69. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., Benguría, A., Zaballos, A., Flores, J. M., Barbacid, M., Beach, D., & Serrano, M. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051), 642. https://doi.org/10.1038/436642a.

    Article  CAS  PubMed  Google Scholar 

  70. van Deursen, J. M. (2014). The role of senescent cells in ageing. Nature, 509(7501), 439–446. https://doi.org/10.1038/nature13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkisian, C. J., Keister, B. A., Stairs, D. B., Boxer, R. B., Moody, S. E., & Chodosh, L. A. (2007). Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nature Cell Biology, 9(5), 493–505. https://doi.org/10.1038/ncb1567.

    Article  CAS  PubMed  Google Scholar 

  72. Young, T. W., Mei, F. C., Yang, G., Thompson-Lanza, J. A., Liu, J., & Cheng, X. (2004). Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Research, 64(13), 4577–4584. https://doi.org/10.1158/0008-5472.CAN-04-0222.

    Article  CAS  PubMed  Google Scholar 

  73. Baek, K. H., Bhang, D., Zaslavsky, A., Wang, L. C., Vachani, A., Kim, C. F., Albelda, S. M., Evan, G. I., & Ryeom, S. (2013). Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors. The Journal of Clinical Investigation, 123(10), 4375–4389. https://doi.org/10.1172/JCI67465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews. Cancer, 10(1), 51–57. https://doi.org/10.1038/nrc2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran, P. T., Shroff, E. H., Burns, T. F., Thiyagarajan, S., Das, S. T., Zabuawala, T., Chen, J., Cho, Y. J., Luong, R., Tamayo, P., Salih, T., Aziz, K., Adam, S. J., Vicent, S., Nielsen, C. H., Withofs, N., Sweet-Cordero, A., Gambhir, S. S., Rudin, C. M., & Felsher, D. W. (2012). Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genetics, 8(5), e1002650. https://doi.org/10.1371/journal.pgen.1002650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L. V., Kolettas, E., Niforou, K., Zoumpourlis, V. C., Takaoka, M., Nakagawa, H., Tort, F., Fugger, K., Johansson, F., Sehested, M., Andersen, C. L., Dyrskjot, L., Ørntoft, T., Lukas, J., Kittas, C., Helleday, T., Halazonetis, T. D., Bartek, J., & Gorgoulis, V. G. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444(7119), 633–637. https://doi.org/10.1038/nature05268.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Z., Trotman, L. C., Shaffer, D., Lin, H. K., Dotan, Z. A., Niki, M., Koutcher, J. A., Scher, H. I., Ludwig, T., Gerald, W., Cordon-Cardo, C., & Pandolfi, P. P. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436(7051), 725–730. https://doi.org/10.1038/nature03918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Courtois-Cox, S., Genther Williams, S. M., Reczek, E. E., Johnson, B. W., McGillicuddy, L. T., Johannessen, C. M., et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell, 10(6), 459–472. https://doi.org/10.1016/j.ccr.2006.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fujita, K., Mondal, A. M., Horikawa, I., Nguyen, G. H., Kumamoto, K., Sohn, J. J., Bowman, E. D., Mathe, E. A., Schetter, A. J., Pine, S. R., Ji, H., Vojtesek, B., Bourdon, J. C., Lane, D. P., & Harris, C. C. (2009). p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nature Cell Biology, 11(9), 1135–1142. https://doi.org/10.1038/ncb1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gray-Schopfer, V. C., Cheong, S. C., Chong, H., Chow, J., Moss, T., Abdel-Malek, Z. A., Marais, R., Wynford-Thomas, D., & Bennett, D. C. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? British Journal of Cancer, 95(4), 496–505. https://doi.org/10.1038/sj.bjc.6603283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724. https://doi.org/10.1038/nature03890.

    Article  CAS  PubMed  Google Scholar 

  82. Peeper, D. S., Shvarts, A., Brummelkamp, T., Douma, S., Koh, E. Y., Daley, G. Q., & Bernards, R. (2002). A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biology, 4(2), 148–153. https://doi.org/10.1038/ncb742.

    Article  CAS  PubMed  Google Scholar 

  83. Palmero, I., Pantoja, C., & Serrano, M. (1998). p19ARF links the tumour suppressor p53 to Ras. Nature, 395(6698), 125–126. https://doi.org/10.1038/25870.

    Article  CAS  PubMed  Google Scholar 

  84. Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M., & Green, M. R. (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 132(3), 363–374. https://doi.org/10.1016/j.cell.2007.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Angelini, P. D., Zacarias Fluck, M. F., Pedersen, K., Parra-Palau, J. L., Guiu, M., Bernado Morales, C., et al. (2013). Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence. Cancer Research, 73(1), 450–458. https://doi.org/10.1158/0008-5472.CAN-12-2301.

    Article  CAS  PubMed  Google Scholar 

  86. Garbers, C., Kuck, F., Aparicio-Siegmund, S., Konzak, K., Kessenbrock, M., Sommerfeld, A., Häussinger, D., Lang, P. A., Brenner, D., Mak, T. W., Rose-John, S., Essmann, F., Schulze-Osthoff, K., Piekorz, R. P., & Scheller, J. (2013). Cellular senescence or EGFR signaling induces interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle, 12(21), 3421–3432. https://doi.org/10.4161/cc.26431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berger, A. H., Knudson, A. G., & Pandolfi, P. P. (2011). A continuum model for tumour suppression. Nature, 476(7359), 163–169. https://doi.org/10.1038/nature10275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Larribere, L., Wu, H., Novak, D., Galach, M., Bernhardt, M., Orouji, E., Weina, K., Knappe, N., Sachpekidis, C., Umansky, L., Beckhove, P., Umansky, V., de Schepper, S., Kaufmann, D., Ballotti, R., Bertolotto, C., & Utikal, J. (2015). NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell & Melanoma Research, 28(4), 407–416. https://doi.org/10.1111/pcmr.12369.

    Article  CAS  Google Scholar 

  89. Shamma, A., Takegami, Y., Miki, T., Kitajima, S., Noda, M., Obara, T., Okamoto, T., & Takahashi, C. (2009). Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell, 15(4), 255–269. https://doi.org/10.1016/j.ccr.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  90. Young, A. P., Schlisio, S., Minamishima, Y. A., Zhang, Q., Li, L., Grisanzio, C., Signoretti, S., & Kaelin WG Jr. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nature Cell Biology, 10(3), 361–369. https://doi.org/10.1038/ncb1699.

    Article  CAS  PubMed  Google Scholar 

  91. Di Mitri, D., & Alimonti, A. (2016). Non-cell-autonomous regulation of cellular senescence in cancer. Trends in Cell Biology, 26(3), 215–226. https://doi.org/10.1016/j.tcb.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  92. Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J., & Peeper, D. S. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133(6), 1019–1031. https://doi.org/10.1016/j.cell.2008.03.039.

    Article  CAS  PubMed  Google Scholar 

  93. Acosta, J. C., O’Loghlen, A., Banito, A., Guijarro, M. V., Augert, A., Raguz, S., Fumagalli, M., da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d’Adda di Fagagna, F., Bernard, D., Hernando, E., & Gil, J. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 133(6), 1006–1018. https://doi.org/10.1016/j.cell.2008.03.038.

    Article  CAS  PubMed  Google Scholar 

  94. Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J. P., Athineos, D., Kang, T. W., Lasitschka, F., Andrulis, M., Pascual, G., Morris, K. J., Khan, S., Jin, H., Dharmalingam, G., Snijders, A. P., Carroll, T., Capper, D., Pritchard, C., Inman, G. J., Longerich, T., Sansom, O. J., Benitah, S. A., Zender, L., & Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15(8), 978–990. https://doi.org/10.1038/ncb2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lopes-Paciencia, S., Saint-Germain, E., Rowell, M. C., Ruiz, A. F., Kalegari, P., & Ferbeyre, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15–22. https://doi.org/10.1016/j.cyto.2019.01.013.

    Article  CAS  PubMed  Google Scholar 

  96. Kang, T. W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., Iken, M., Vucur, M., Weiss, S., Heikenwalder, M., Khan, S., Gil, J., Bruder, D., Manns, M., Schirmacher, P., Tacke, F., Ott, M., Luedde, T., Longerich, T., Kubicka, S., & Zender, L. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature, 479(7374), 547–551. https://doi.org/10.1038/nature10599.

    Article  CAS  PubMed  Google Scholar 

  97. Bavik, C., Coleman, I., Dean, J. P., Knudsen, B., Plymate, S., & Nelson, P. S. (2006). The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Research, 66(2), 794–802.

    CAS  PubMed  Google Scholar 

  98. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., & Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 12072–12077.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, D., & Hornsby, P. J. (2007). Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Research, 67(7), 3117–3126.

    CAS  PubMed  Google Scholar 

  100. Parrinello, S., Coppe, J. P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(Pt 3), 485–496. https://doi.org/10.1242/jcs.01635.

    Article  CAS  PubMed  Google Scholar 

  101. Herbig, U., Ferreira, M., Condel, L., Carey, D., & Sedivy, J. M. (2006). Cellular senescence in aging primates. Science, 311(5765), 1257.

    CAS  PubMed  Google Scholar 

  102. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M., & Herbig, U. (2007). Accumulation of senescent cells in mitotic tissue of aging primates. Mechanisms of Ageing and Development, 128(1), 36–44.

    CAS  PubMed  Google Scholar 

  103. Kishi, S. (2004). Functional aging and gradual senescence in zebrafish. Annals of the New York Academy of Sciences, 1019, 521–526.

    CAS  PubMed  Google Scholar 

  104. Melk, A., Kittikowit, W., Sandhu, I., Halloran, K. M., Grimm, P., Schmidt, B. M., et al. (2003). Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney International, 63(6), 2134–2143.

    CAS  PubMed  Google Scholar 

  105. Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., et al. (2017). Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discovery, 7(2), 165–176. https://doi.org/10.1158/2159-8290.CD-16-0241.

    Article  CAS  PubMed  Google Scholar 

  106. Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-induced senescence in cancer. Journal of the National Cancer Institute, 102(20), 1536–1546. https://doi.org/10.1093/jnci/djq364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Toso, A., Di Mitri, D., & Alimonti, A. (2015). Enhancing chemotherapy efficacy by reprogramming the senescence-associated secretory phenotype of prostate tumors: a way to reactivate the antitumor immunity. Oncoimmunology, 4(3), e994380. https://doi.org/10.4161/2162402X.2014.994380.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Park, W. Y., Park, J. S., Cho, K. A., Kim, D. I., Ko, Y. G., Seo, J. S., et al. (2000). Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. The Journal of Biological Chemistry, 275(27), 20847–20852.

    CAS  PubMed  Google Scholar 

  109. Wheaton, K., Sampsel, K., Boisvert, F. M., Davy, A., Robbins, S., & Riabowol, K. (2001). Loss of functional caveolae during senescence of human fibroblasts. Journal of Cellular Physiology, 187(2), 226–235.

    CAS  PubMed  Google Scholar 

  110. Cho, K. A., Ryu, S. J., Park, J. S., Jang, I. S., Ahn, J. S., Kim, K. T., et al. (2003). Senescent phenotype can be reversed by reduction of caveolin status. The Journal of Biological Chemistry, 278(30), 27789–27795.

    CAS  PubMed  Google Scholar 

  111. Cho, K. A., Ryu, S. J., Oh, Y. S., Park, J. H., Lee, J. W., Kim, H. P., et al. (2004). Morphological adjustment of senescent cells by modulating caveolin-1 status. The Journal of Biological Chemistry, 279(40), 42270–42278.

    CAS  PubMed  Google Scholar 

  112. Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J., & Chen, J. R. (2014). Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways. The FASEB Journal, 28(7), 3134–3145. https://doi.org/10.1096/fj.13-243659.

    Article  CAS  PubMed  Google Scholar 

  113. Park, J. S., Kim, H. Y., Kim, H. W., Chae, G. N., Oh, H. T., Park, J. Y., et al. (2005). Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells. Mechanisms of Ageing and Development, 126(5), 551–559.

    CAS  PubMed  Google Scholar 

  114. Sun, C., Wang, N., Huang, J., Xin, J., Peng, F., Ren, Y., et al. (2009). Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro. Journal of Cellular Biochemistry, 108(2), 519–528.

    CAS  PubMed  Google Scholar 

  115. Lim, J. S., Nguyen, K. C., Nguyen, C. T., Jang, I. S., Han, J. M., Fabian, C., et al. (2015). Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell, 14(5), 907–915. https://doi.org/10.1111/acel.12383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun, S., Cai, B., Li, Y., Su, W., Zhao, X., Gong, B., et al. (2019). HMGB1 and Caveolin-1 related to RPE cell senescence in age-related macular degeneration. Aging (Albany NY), 11(13), 4323–4337. https://doi.org/10.18632/aging.102039.

    Article  CAS  Google Scholar 

  117. Yudoh, K., Shi, Y., & Karasawa, R. (2009). Angiogenic growth factors inhibit chondrocyte ageing in osteoarthritis: potential involvement of catabolic stress-induced overexpression of caveolin-1 in cellular ageing. International Journal of Rheumatic Diseases, 12(2), 90–99.

    PubMed  Google Scholar 

  118. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236. https://doi.org/10.1038/nature10600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., et al. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature, 530(7589), 184–189. https://doi.org/10.1038/nature16932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patil, P., Dong, Q., Wang, D., Chang, J., Wiley, C., Demaria, M., et al. (2019). Systemic clearance of p16(INK4a) -positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell, 18(3), e12927. https://doi.org/10.1111/acel.12927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kang, M. J., Chung, Y. H., Hwang, C. I., Murata, M., Fujimoto, T., Mook-Jung, I. H., et al. (2006). Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Experimental & Molecular Medicine, 38(2), 126–133.

    CAS  Google Scholar 

  122. Oh, Y. S., Khil, L. Y., Cho, K. A., Ryu, S. J., Ha, M. K., Cheon, G. J., et al. (2008). A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia, 51(6), 1025–1034.

    CAS  PubMed  Google Scholar 

  123. Kruglikov, I. L., Zhang, Z., & Scherer, P. E. (2019). Caveolin-1 in skin aging - from innocent bystander to major contributor. Ageing Research Reviews, 55, 100959. https://doi.org/10.1016/j.arr.2019.100959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee, J. A., Choi, D. I., Choi, J. Y., Kim, S. O., Cho, K. A., Lee, J. B., et al. (2015). Methyl-beta-cyclodextrin up-regulates collagen I expression in chronologically-aged skin via its anti-caveolin-1 activity. Oncotarget, 6(4), 1942–1953. https://doi.org/10.18632/oncotarget.3039.

    Article  PubMed  Google Scholar 

  125. Roitenberg, N., Bejerano-Sagie, M., Boocholez, H., Moll, L., Marques, F. C., Golodetzki, L., et al. (2018). Modulation of caveolae by insulin/IGF-1 signaling regulates aging of Caenorhabditis eglegans. EMBO Reports, 19(8). https://doi.org/10.15252/embr.201745673.

  126. Herbert, Z., Botticher, G., Aschoff, A., Sendemir, E., Zermann, D. H., Arnold, R., et al. (2007). Changing caveolin-1 and oxytocin receptor distribution in the ageing human prostate. Anatomia, Histologia, Embryologia, 36(5), 361–365.

    CAS  PubMed  Google Scholar 

  127. Gaudreault, S. B., Dea, D., & Poirier, J. (2004). Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiology of Aging, 25(6), 753–759.

    CAS  PubMed  Google Scholar 

  128. Volonte, D., Zhang, K., Lisanti, M. P., & Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Molecular Biology of the Cell, 13(7), 2502–2517.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dasari, A., Bartholomew, J. N., Volonte, D., & Galbiati, F. (2006). Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Research, 66(22), 10805–10814.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bartholomew, J. N., Volonte, D., & Galbiati, F. (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Research, 69(7), 2878–2886.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P. G., Zhu, L., et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Molecular Biology of the Cell, 12(8), 2229–2244.

  132. Ding, L., Zeng, Q., Wu, J., Li, D., Wang, H., Lu, W., et al. (2017). Caveolin1 regulates oxidative stressinduced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro. Molecular Medicine Reports, 16(6), 9521–9527. https://doi.org/10.3892/mmr.2017.7789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, J., Bai, Y., Zhao, X., Ru, J., Kang, N., Tian, T., et al. (2018). oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Bioscience Reports, 38(3). https://doi.org/10.1042/BSR20180283.

  134. Farhat, N., Thorin-Trescases, N., Voghel, G., Villeneuve, L., Mamarbachi, M., Perrault, L. P., et al. (2008). Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Canadian Journal of Physiology and Pharmacology, 86(11), 761–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Voghel, G., Thorin-Trescases, N., Farhat, N., Nguyen, A., Villeneuve, L., Mamarbachi, A. M., et al. (2007). Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mechanisms of Ageing and Development, 128(11–12), 662–671.

    CAS  PubMed  Google Scholar 

  136. Powter, E. E., Coleman, P. R., Tran, M. H., Lay, A. J., Bertolino, P., Parton, R. G., et al. (2015). Caveolae control the anti-inflammatory phenotype of senescent endothelial cells. Aging Cell, 14(1), 102–111. https://doi.org/10.1111/acel.12270.

    Article  CAS  PubMed  Google Scholar 

  137. Kim, S. R., Park, J. H., Lee, M. E., Park, J. S., Park, S. C., & Han, J. A. (2008). Selective COX-2 inhibitors modulate cellular senescence in human dermal fibroblasts in a catalytic activity-independent manner. Mechanisms of Ageing and Development, 129(12), 706–713.

    CAS  PubMed  Google Scholar 

  138. Wu, C. C., Lin, J. C., Yang, S. C., Lin, C. W., Chen, J. J., Shih, J. Y., et al. (2008). Modulation of the expression of the invasion-suppressor CRMP-1 by cyclooxygenase-2 inhibition via reciprocal regulation of Sp1 and C/EBPalpha. Molecular Cancer Therapeutics, 7(6), 1365–1375.

    CAS  PubMed  Google Scholar 

  139. Jager, M., Hubert, A., Gogiraju, R., Bochenek, M. L., Munzel, T., & Schafer, K. (2019). Inducible knockdown of endothelial protein tyrosine phosphatase-1B promotes neointima formation in obese mice by enhancing endothelial senescence. Antioxidants & Redox Signaling, 30(7), 927–944. https://doi.org/10.1089/ars.2017.7169.

    Article  CAS  Google Scholar 

  140. Blasiak, J. (2017). DNA-damaging anticancer drugs - a perspective for DNA repair- oriented therapy. Current Medicinal Chemistry, 24(15), 1488–1503. https://doi.org/10.2174/0929867324666170124145557.

    Article  CAS  PubMed  Google Scholar 

  141. Linge, A., Weinhold, K., Blasche, R., Kasper, M., & Barth, K. (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. The International Journal of Biochemistry & Cell Biology, 39(10), 1964–1974.

    CAS  Google Scholar 

  142. Shivshankar, P., Brampton, C., Miyasato, S., Kasper, M., Thannickal, V. J., & Le Saux, C. J. (2012). Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. American Journal of Respiratory Cell and Molecular Biology, 47(1), 28–36. https://doi.org/10.1165/rcmb.2011-0349OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Feng, X., Gao, W., & Li, Y. (2017). Caveolin-1 is involved in high glucose accelerated human glomerular mesangial cell senescence. The Korean Journal of Internal Medicine, 32(5), 883–889. https://doi.org/10.3904/kjim.2015.254.

    Article  CAS  PubMed  Google Scholar 

  144. Bitar, M. S., Abdel-Halim, S. M., & Al-Mulla, F. (2013). Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: implications for evidence-based therapy of delayed wound healing in diabetes. American Journal of Physiology. Endocrinology and Metabolism, 305(8), E951–E963. https://doi.org/10.1152/ajpendo.00189.2013.

    Article  CAS  PubMed  Google Scholar 

  145. Volonte, D., & Galbiati, F. (2011). Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. The Journal of Biological Chemistry, 286(33), 28657–28661.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Volonte, D., Kahkonen, B., Shapiro, S., Di, Y., & Galbiati, F. (2009). Caveolin-1 expression is required for the development of pulmonary emphysema through activation of the ATM-p53-p21 pathway. The Journal of Biological Chemistry, 284(9), 5462–5466.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Dai, S. M., Shan, Z. Z., Nakamura, H., Masuko-Hongo, K., Kato, T., Nishioka, K., et al. (2006). Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis and Rheumatism, 54(3), 818–831.

    CAS  PubMed  Google Scholar 

  148. Goodarzi, A. A., Jonnalagadda, J. C., Douglas, P., Young, D., Ye, R., Moorhead, G. B., et al. (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. The EMBO Journal, 23(22), 4451–4461.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Volonte, D., Zou, H., Bartholomew, J. N., Liu, Z., Morel, P. A., & Galbiati, F. (2015). Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6). The Journal of Biological Chemistry, 290(7), 4202–4214. https://doi.org/10.1074/jbc.M114.598268.

    Article  CAS  PubMed  Google Scholar 

  150. Joshi, B., Pawling, J., Shankar, J., Pacholczyk, K., Kim, Y., Tran, W., et al. (2019). Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget, 10(62), 6668–6677. https://doi.org/10.18632/oncotarget.27313.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, J. R., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., & Ronis, M. J. (2015). Soy protein isolate inhibits high-fat diet-induced senescence pathways in osteoblasts to maintain bone acquisition in male rats. Endocrinology, 156(2), 475–487. https://doi.org/10.1210/en.2014-1427.

    Article  CAS  PubMed  Google Scholar 

  152. Volonte, D., Liu, Z., Musille, P. M., Stoppani, E., Wakabayashi, N., Di, Y. P., et al. (2013). Inhibition of nuclear factor-erythroid 2-related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence. Molecular Biology of the Cell, 24(12), 1852–1862. https://doi.org/10.1091/mbc.E12-09-0666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, W., Liu, H., Zhou, J. S., Cao, J. F., Zhou, X. B., Choi, A. M., et al. (2012). Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2). The Journal of Biological Chemistry, 287(25), 20922–20930. https://doi.org/10.1074/jbc.M112.352336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Petriello, M. C., Han, S. G., Newsome, B. J., & Hennig, B. (2014). PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicology and Applied Pharmacology, 277(2), 192–199. https://doi.org/10.1016/j.taap.2014.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hart, P. C., Ratti, B. A., Mao, M., Ansenberger-Fricano, K., Shajahan-Haq, A. N., Tyner, A. L., et al. (2016). Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget, 7(1), 308–322. https://doi.org/10.18632/oncotarget.5687.

    Article  PubMed  Google Scholar 

  156. Behne, D., & Kyriakopoulos, A. (2001). Mammalian selenium-containing proteins. Annual Review of Nutrition, 21, 453–473.

    CAS  PubMed  Google Scholar 

  157. Mustacich, D., & Powis, G. (2000). Thioredoxin reductase. The Biochemical Journal, 346(Pt 1), 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Volonte, D., & Galbiati, F. (2009). Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence. EMBO Reports, 10(12), 1334–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gad, H., Koolmeister, T., Jemth, A. S., Eshtad, S., Jacques, S. A., Strom, C. E., et al. (2014). MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 508(7495), 215–221. https://doi.org/10.1038/nature13181.

    Article  CAS  PubMed  Google Scholar 

  160. Huber, K. V., Salah, E., Radic, B., Gridling, M., Elkins, J. M., Stukalov, A., et al. (2014). Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 508(7495), 222–227. https://doi.org/10.1038/nature13194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Patel, A., Burton, D. G., Halvorsen, K., Balkan, W., Reiner, T., Perez-Stable, C., et al. (2015). MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene, 34(20), 2586–2596. https://doi.org/10.1038/onc.2014.195.

    Article  CAS  PubMed  Google Scholar 

  162. Rai, P., Onder, T. T., Young, J. J., McFaline, J. L., Pang, B., Dedon, P. C., et al. (2009). Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 169–174. https://doi.org/10.1073/pnas.0809834106.

    Article  PubMed  Google Scholar 

  163. Rai, P., Young, J. J., Burton, D. G., Giribaldi, M. G., Onder, T. T., & Weinberg, R. A. (2011). Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene, 30(12), 1489–1496. https://doi.org/10.1038/onc.2010.520.

    Article  CAS  PubMed  Google Scholar 

  164. Rai, P. (2012). Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS. Small GTPases, 3(2), 120–125. https://doi.org/10.4161/sgtp.19556.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Volonte, D., Vyas, A. R., Chen, C., Dacic, S., Stabile, L. P., Kurland, B. F., et al. (2018). Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. The Journal of Biological Chemistry, 293(5), 1794–1809. https://doi.org/10.1074/jbc.M117.815902.

    Article  CAS  PubMed  Google Scholar 

  166. MacNee, W. (2005). Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2(1), 50–60.

    CAS  PubMed  Google Scholar 

  167. Nyunoya, T., Monick, M. M., Klingelhutz, A., Yarovinsky, T. O., Cagley, J. R., & Hunninghake, G. W. (2006). Cigarette smoke induces cellular senescence. American Journal of Respiratory Cell and Molecular Biology, 35(6), 681–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Holz, O., Zuhlke, I., Jaksztat, E., Muller, K. C., Welker, L., Nakashima, M., et al. (2004). Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. The European Respiratory Journal, 24(4), 575–579.

    CAS  PubMed  Google Scholar 

  169. Muller, K. C., Welker, L., Paasch, K., Feindt, B., Erpenbeck, V. J., Hohlfeld, J. M., et al. (2006). Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respiratory Research, 7, 32.

    PubMed  PubMed Central  Google Scholar 

  170. Meyn, R. E., Munshi, A., Haymach, J. V., Milas, L., & Ang, K. K. (2009). Receptor signaling as a regulatory mechanism of DNA repair. Radiotherapy and Oncology, 92(3), 316–322. https://doi.org/10.1016/j.radonc.2009.06.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Luoma, K., Riihimaki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., & Lamminen, A. (2000). Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976), 25(4), 487–492.

    CAS  Google Scholar 

  172. Gruber, H. E., Ingram, J. A., Norton, H. J., & Hanley Jr., E. N. (2007). Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine (Phila Pa 1976), 32(3), 321–327.

    Google Scholar 

  173. Le Maitre, C. L., Freemont, A. J., & Hoyland, J. A. (2007). Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Research & Therapy, 9(3), R45.

    Google Scholar 

  174. Roberts, S., Evans, E. H., Kletsas, D., Jaffray, D. C., & Eisenstein, S. M. (2006). Senescence in human intervertebral discs. European Spine Journal, 15(Suppl 3), S312–S316.

    PubMed  Google Scholar 

  175. Heathfield, S. K., Le Maitre, C. L., & Hoyland, J. A. (2008). Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Research & Therapy, 10(4), R87.

    Google Scholar 

  176. Yu, D. M., Jung, S. H., An, H. T., Lee, S., Hong, J., Park, J. S., et al. (2017). Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction. Aging Cell, 16(4), 773–784. https://doi.org/10.1111/acel.12606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Volonte, D., Liu, Z., Shiva, S., & Galbiati, F. (2016). Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease. Aging (Albany NY), 8(10), 2355–2369. https://doi.org/10.18632/aging.101051.

    Article  CAS  Google Scholar 

  178. Jeffries, E. P., Di Filippo, M., & Galbiati, F. (2018). Failure to reabsorb the primary cilium induces cellular senescence. The FASEB Journal, fj201801382R. https://doi.org/10.1096/fj.201801382R.

  179. Capparelli, C., Guido, C., Whitaker-Menezes, D., Bonuccelli, G., Balliet, R., Pestell, T. G., et al. (2012). Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle, 11(12), 2285–2302. https://doi.org/10.4161/cc.20718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mercier, I., Casimiro, M. C., Wang, C., Rosenberg, A. L., Quong, J., Minkeu, A., et al. (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biology & Therapy, 7(8), 1212–1225.

    CAS  Google Scholar 

  181. Mallette, F. A., Gaumont-Leclerc, M. F., & Ferbeyre, G. (2007). The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes & Development, 21(1), 43–48. https://doi.org/10.1101/gad.1487307.

    Article  CAS  Google Scholar 

  182. Maehara, K., Yamakoshi, K., Ohtani, N., Kubo, Y., Takahashi, A., Arase, S., et al. (2005). Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. The Journal of Cell Biology, 168(4), 553–560. https://doi.org/10.1083/jcb.200411093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Park, C., Lee, I., & Kang, W. K. (2006). E2F-1 is a critical modulator of cellular senescence in human cancer. International Journal of Molecular Medicine, 17(5), 715–720.

    CAS  PubMed  Google Scholar 

  184. Yang, C.-P., Galbiati, F., Volonte’, D., Horwitz, S. B., & Lisanti, M. P. (1998). Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Letters, 439, 368–372.

    CAS  PubMed  Google Scholar 

  185. Berggren, M., Gallegos, A., Gasdaska, J. R., Gasdaska, P. Y., Warneke, J., & Powis, G. (1996). Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Research, 16(6B), 3459–3466.

    CAS  PubMed  Google Scholar 

  186. Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., et al. (2011). NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research, 71(6), 2260–2275.

    CAS  PubMed  Google Scholar 

  187. Krtolica, A., & Campisi, J. (2002). Cancer and aging: a model for the cancer promoting effects of the aging stroma. The International Journal of Biochemistry & Cell Biology, 34(11), 1401–1414.

    CAS  Google Scholar 

  188. Kortum, R. L., Fernandez, M. R., Costanzo-Garvey, D. L., Johnson, H. J., Fisher, K. W., Volle, D. J., et al. (2014). Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 1/2 activation, H-RasV12-induced senescence, and transformation. Molecular and Cellular Biology, 34(18), 3461–3472. https://doi.org/10.1128/MCB.01633-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Johnson, L., Mercer, K., Greenbaum, D., Bronson, R. T., Crowley, D., Tuveson, D. A., et al. (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature, 410(6832), 1111–1116. https://doi.org/10.1038/35074129.

    Article  CAS  PubMed  Google Scholar 

  190. Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y., et al. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Research, 61(6), 2361–2364.

    CAS  PubMed  Google Scholar 

  191. Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.

    CAS  PubMed  Google Scholar 

  192. Torrejon, B., Cristobal, I., Rojo, F., & Garcia-Foncillas, J. (2017). Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World Journal of Surgery, 41(10), 2625–2630. https://doi.org/10.1007/s00268-017-4065-9.

    Article  PubMed  Google Scholar 

  193. Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. The American Journal of Pathology, 159(5), 1635–1643. https://doi.org/10.1016/S0002-9440(10)63010-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Quann, K., Gonzales, D. M., Mercier, I., Wang, C., Sotgia, F., Pestell, R. G., et al. (2013). Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle, 12(10), 1510–1520. https://doi.org/10.4161/cc.24497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., et al. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. The American Journal of Pathology, 158(3), 833–839. https://doi.org/10.1016/S0002-9440(10)64031-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams, T. M., Cheung, M. W., Park, D. S., Razani, B., Cohen, A. W., Muller, W. J., et al. (2003). Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Molecular Biology of the Cell, 14(3), 1027–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Yamao, T., Yamashita, Y. I., Yamamura, K., Nakao, Y., Tsukamoto, M., Nakagawa, S., et al. (2019). Cellular senescence, represented by expression of caveolin-1, in cancer-associated fibroblasts promotes tumor invasion in pancreatic cancer. Annals of Surgical Oncology, 26(5), 1552–1559. https://doi.org/10.1245/s10434-019-07266-2.

    Article  PubMed  Google Scholar 

  198. Nunez-Wehinger, S., Ortiz, R. J., Diaz, N., Diaz, J., Lobos-Gonzalez, L., & Quest, A. F. (2014). Caveolin-1 in cell migration and metastasis. Current Molecular Medicine, 14(2), 255–274. https://doi.org/10.2174/1566524014666140128112827.

    Article  CAS  PubMed  Google Scholar 

  199. Quest, A. F., Gutierrez-Pajares, J. L., & Torres, V. A. (2008). Caveolin-1: an ambiguous partner in cell signalling and cancer. Journal of Cellular and Molecular Medicine, 12(4), 1130–1150. https://doi.org/10.1111/j.1582-4934.2008.00331.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

F.G. was supported by grants from the National Cancer Institute (R01-CA205165) and the Aging Institute and Hillman Cancer Center Seed Grant Program; D.V. was supported by a grant from the National Institute on Aging (R21-AG061614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruccio Galbiati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volonte, D., Galbiati, F. Caveolin-1, a master regulator of cellular senescence. Cancer Metastasis Rev 39, 397–414 (2020). https://doi.org/10.1007/s10555-020-09875-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09875-w

Keywords

Navigation