Skip to main content
Log in

Contemporary use of coronary computed tomography angiography in the planning of percutaneous coronary intervention

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Planning of percutaneous coronary interventions (PCI) is largely based on anatomical information obtained with invasive coronary angiography. Over the last decade, intracoronary information obtained from both imaging and physiological techniques has gradually gained recognition for this purpose. Yet, coronary computed tomography angiography (CCTA) is still ignored by most interventionalists as a tool in the planning of PCI strategies. This has occurred despite major developments in CCTA, including physiological assessment, plaque characterisation, etc. Furthermore, it is foreseeable that many more patients referred to the catheterisation laboratory will have had a prior CCTA study. In this review we discuss the distinct advantages provided by CCTA in studying coronary artery structure and function. We revisit the most frequent scenarios of complex PCI and establish analogies between the use of intracoronary diagnostics and CCTA in setting procedural strategy, and in anticipating specific challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nasir K, Clouse M (2012) Role of nonenhanced multidetector CT coronary artery calcium testing in asymptomatic and symptomatic individuals. Radiology 264(3):637–649. https://doi.org/10.1148/radiol.12110810

    Article  PubMed  Google Scholar 

  2. Sun Z (2010) Multislice CT angiography in cardiac imaging: Prospective ECG-gating or retrospective ECG-gating?”. Biomed Imaging Interv J. https://doi.org/10.2349/biij.6.1.e4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Budoff MJ et al (1996) Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. Circulation 93(5):898–904. https://doi.org/10.1161/01.CIR.93.5.898

    Article  CAS  PubMed  Google Scholar 

  4. Blaha MJ, Mortensen MB, Kianoush S, Tota-Maharaj R, Cainzos-Achirica M (2017) Coronary artery calcium scoring: is it time for a change in methodology? JACC Cardiovasc Imaging 10(8):923–937. https://doi.org/10.1016/j.jcmg.2017.05.007

    Article  PubMed  Google Scholar 

  5. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832. https://doi.org/10.1016/0735-1097(90)90282-T

    Article  CAS  PubMed  Google Scholar 

  6. Silverman MG et al (2014) Baseline subclinical atherosclerosis burden and distribution are associated with frequency and mode of future coronary revascularization: multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging 7(5):476–486. https://doi.org/10.1016/j.jcmg.2014.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  7. Detrano R et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345. https://doi.org/10.1056/NEJMoa072100

    Article  CAS  PubMed  Google Scholar 

  8. McKavanagh P et al (2015) The essentials of cardiac computerized tomography. Cardiol Ther 4(2):117–129. https://doi.org/10.1007/s40119-015-0052-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller JM et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336. https://doi.org/10.1056/NEJMoa0806576

    Article  CAS  PubMed  Google Scholar 

  10. Takakuwa KM, Keith SW, Estepa AT, Shofer FS (2011) A meta-analysis of 64-section coronary CT angiography findings for predicting 30-day major adverse cardiac events in patients presenting with symptoms suggestive of acute coronary syndrome. Acad Radiol 18(12):1522–1528. https://doi.org/10.1016/j.acra.2011.08.013

    Article  PubMed  Google Scholar 

  11. Mowatt G et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart Br Card Soc 94(11):1386–1393. https://doi.org/10.1136/hrt.2008.145292

    Article  CAS  Google Scholar 

  12. Hausleiter J et al (2012) Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging 5(5):484–493. https://doi.org/10.1016/j.jcmg.2011.12.017

    Article  PubMed  Google Scholar 

  13. Abbara S et al (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 10(6):435–449. https://doi.org/10.1016/j.jcct.2016.10.002

    Article  PubMed  Google Scholar 

  14. “CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial,” The Lancet, 385(9985):2383–2391 (2015). doi: https://doi.org/10.1016/S0140-6736(15)60291-4.

  15. Knuuti J et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromesThe Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  16. Voros S et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4(5):537–548. https://doi.org/10.1016/j.jcmg.2011.03.006

    Article  PubMed  Google Scholar 

  17. Raff GL et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3(2):122–136. https://doi.org/10.1016/j.jcct.2009.01.001

    Article  PubMed  Google Scholar 

  18. Hadamitzky M et al (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT angiography EvaluatioN for clinical outcomes: an international multicenter registry). J Am Coll Cardiol 62(5):468–476. https://doi.org/10.1016/j.jacc.2013.04.064

    Article  PubMed  Google Scholar 

  19. Kolossváry M, Szilveszter B, Merkely B, Maurovich-Horvat P (2017) Plaque imaging with CT—a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc Diagn Ther 7(5):489–506. https://doi.org/10.21037/cdt.2016.11.06

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hadamitzky M et al (2013) Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J 34(42):3277–3285. https://doi.org/10.1093/eurheartj/eht293

    Article  PubMed  Google Scholar 

  21. Dedic A et al (2014) Prognostic implications of non-culprit plaques in acute coronary syndrome: non-invasive assessment with coronary CT angiography. Eur Heart J Cardiovasc Imaging 15(11):1231–1237. https://doi.org/10.1093/ehjci/jeu111

    Article  PubMed  Google Scholar 

  22. Rodriguez-Granillo GA, Carrascosa P, Bruining N, Waksman R, Garcia-Garcia HM (2016) Defining the non-vulnerable and vulnerable patients with computed tomography coronary angiography: evaluation of atherosclerotic plaque burden and composition. Eur Heart J Cardiovasc Imaging 17(5):481–491. https://doi.org/10.1093/ehjci/jew012

    Article  PubMed  Google Scholar 

  23. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the Vulnerable Plaque. J. Am. Coll. Cardiol. 47(8 Supplement):C13–C18. https://doi.org/10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  24. Burke AP, Virmani R, Galis Z, Haudenschild CC, Muller JE (2003) Task force #2—what is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol 41(11):1874–1886. https://doi.org/10.1016/S0735-1097(03)00359-0

    Article  PubMed  Google Scholar 

  25. Saremi F, Achenbach S (2015) Coronary Plaque Characterization Using CT. Am J Roentgenol 204(3):W249–W260. https://doi.org/10.2214/AJR.14.13760

    Article  Google Scholar 

  26. Kashiwagi M et al (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2(12):1412–1419. https://doi.org/10.1016/j.jcmg.2009.09.012

    Article  PubMed  Google Scholar 

  27. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H (2010) The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging 3(4):440–444. https://doi.org/10.1016/j.jcmg.2010.02.003

    Article  PubMed  Google Scholar 

  28. van Velzen JE et al (2011) Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol 18(5):893–903. https://doi.org/10.1007/s12350-011-9428-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Motoyama S et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  30. Motoyama S et al (2015) Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol 66(4):337–346. https://doi.org/10.1016/j.jacc.2015.05.069

    Article  PubMed  Google Scholar 

  31. Yamamoto H et al (2018) Coronary plaque characteristics in computed tomography and 2-year outcomes: The PREDICT study. J Cardiovasc Comput Tomogr 12(5):436–443. https://doi.org/10.1016/j.jcct.2018.07.001

    Article  PubMed  Google Scholar 

  32. Williams MC et al (2019) Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 73(3):291–301. https://doi.org/10.1016/j.jacc.2018.10.066

    Article  PubMed  PubMed Central  Google Scholar 

  33. Achenbach S et al (2010) Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4(2):110–115. https://doi.org/10.1016/j.jcct.2010.01.013

    Article  PubMed  Google Scholar 

  34. Dalager MG et al (2011) Imaging atherosclerotic plaques by cardiac computed tomography in vitro: impact of contrast type and acquisition protocol. Invest Radiol 46(12):790–795. https://doi.org/10.1097/RLI.0b013e31822b122e

    Article  PubMed  Google Scholar 

  35. Tanami Y et al (2010) Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr 34(1):58–63. https://doi.org/10.1097/RCT.0b013e3181b66c41

    Article  PubMed  Google Scholar 

  36. Cademartiri F et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17(7):1842–1849. https://doi.org/10.1007/s00330-006-0548-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cademartiri F et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15(7):1426–1431. https://doi.org/10.1007/s00330-005-2697-x

    Article  PubMed  Google Scholar 

  38. O. Ghekiere, et al. (2017) Image quality in coronary CT angiography: challenges and technical solutions. Br. J. Radiol. Doi: https://doi.org/10.1259/bjr.20160567

  39. Obaid DR et al (2014) Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: a prospective study with tissue validation. J Cardiovasc Comput Tomogr 8(3):230–237. https://doi.org/10.1016/j.jcct.2014.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barreto M et al (2008) Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2(4):234–242. https://doi.org/10.1016/j.jcct.2008.05.146

    Article  PubMed  Google Scholar 

  41. Bech GJ et al (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103(24):2928–2934. https://doi.org/10.1161/01.cir.103.24.2928

    Article  CAS  PubMed  Google Scholar 

  42. Tonino PAL et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224. https://doi.org/10.1056/NEJMoa0807611

    Article  CAS  PubMed  Google Scholar 

  43. De Bruyne B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001. https://doi.org/10.1056/NEJMoa1205361

    Article  CAS  PubMed  Google Scholar 

  44. Tesche C et al (2017) Coronary CT angiography–derived fractional flow reserve. Radiology 285(1):17–33. https://doi.org/10.1148/radiol.2017162641

    Article  PubMed  Google Scholar 

  45. Kueh SH, Boroditsky M, Leipsic J (2017) Fractional flow reserve computed tomography in the evaluation of coronary artery disease. Cardiovasc Diagn Ther 7(5):463–474. https://doi.org/10.21037/cdt.2017.01.04

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koo B-K et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58(19):1989–1997. https://doi.org/10.1016/j.jacc.2011.06.066

    Article  PubMed  Google Scholar 

  47. Nørgaard BL et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63(12):1145–1155. https://doi.org/10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

  48. Douglas PS et al (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur Heart J 36(47):3359–3367. https://doi.org/10.1093/eurheartj/ehv444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Douglas PS et al (2016) 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J. Am. Coll. Cardiol. 68(5):435–445. https://doi.org/10.1016/j.jacc.2016.05.057

    Article  PubMed  Google Scholar 

  50. Min JK et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245. https://doi.org/10.1001/2012.jama.11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hlatky MA et al (2015) Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol 66(21):2315–2323. https://doi.org/10.1016/j.jacc.2015.09.051

    Article  PubMed  Google Scholar 

  52. Patel MR et al (2020) “1-year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE registry. JACC Cardiovasc Imaging 13(1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003

    Article  PubMed  Google Scholar 

  53. Kim K-H et al (2014) A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv 7(1):72–78. https://doi.org/10.1016/j.jcin.2013.05.024

    Article  PubMed  Google Scholar 

  54. Modi BN et al (2019) Predicting the physiological effect of revascularization in serially diseased coronary arteries: clinical validation of a novel CT coronary angiography-based technique. Circ Cardiovasc Interv 12(2):e007577. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007577

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feldmann K, Cami E, Safian RD (2019) Planning percutaneous coronary interventions using computed tomography angiography and fractional flow reserve-derived from computed tomography: a state-of-the-art review. Catheter Cardiovasc Interv 93(2):298–304. https://doi.org/10.1002/ccd.27817

    Article  PubMed  Google Scholar 

  56. Collet C et al (2018) Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J 39(41):3689–3698. https://doi.org/10.1093/eurheartj/ehy581

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mintz GS et al (1995) Patterns of calcification in coronary artery disease. Circulation 91(7):1959–1965. https://doi.org/10.1161/01.CIR.91.7.1959

    Article  CAS  PubMed  Google Scholar 

  58. Généreux P et al (2017) Two-year outcomes after percutaneous coronary intervention of calcified lesions with drug-eluting stents. Int. J. Cardiol. 231:61–67. https://doi.org/10.1016/j.ijcard.2016.12.150

    Article  PubMed  Google Scholar 

  59. Généreux P et al (2014) Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes: pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) trials. J Am Coll Cardiol 63(18):1845–1854. https://doi.org/10.1016/j.jacc.2014.01.034

    Article  PubMed  Google Scholar 

  60. Harigaya H et al (2011) Prediction of the no-reflow phenomenon during percutaneous coronary intervention using coronary computed tomography angiography. Heart Vessels 26(4):363–369. https://doi.org/10.1007/s00380-010-0059-3

    Article  PubMed  Google Scholar 

  61. Kodama T, Kondo T, Oida A, Fujimoto S, Narula J (2012) Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention. JACC Cardiovasc Interv 5(6):636–643. https://doi.org/10.1016/j.jcin.2012.02.016

    Article  PubMed  Google Scholar 

  62. Miura K et al (2015) Association of nonculprit plaque characteristics with transient slow flow phenomenon during percutaneous coronary intervention. Int J Cardiol 181:108–113. https://doi.org/10.1016/j.ijcard.2014.11.218

    Article  PubMed  Google Scholar 

  63. Opolski MP (2018) Cardiac computed tomography for planning revascularization procedures. J Thorac Imaging 33(1):35–54. https://doi.org/10.1097/RTI.0000000000000262

    Article  PubMed  Google Scholar 

  64. “CT Angiography for Revascularization of CTO: Crossing the Borders of Diagnosis and Treatment,” JACC Cardiovasc. Imaging, 8(7):846–858 (2015). doi: https://doi.org/10.1016/j.jcmg.2015.05.001.

  65. Magro M et al (2010) Computed tomography as a tool for percutaneous coronary intervention of chronic total occlusions. EuroIntervention J Eur Collab Work Group Interv Cardiol Eur Soc Cardiol 6(Suppl G):G123–G131

    Google Scholar 

  66. Mollet NR et al (2005) Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 95(2):240–243. https://doi.org/10.1016/j.amjcard.2004.09.009

    Article  PubMed  Google Scholar 

  67. Garcia-Garcia H et al (2009) Computed tomography in total coronary occlusions (CTTO Registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention 4(5):607–616. https://doi.org/10.4244/EIJV4I5A102

    Article  PubMed  Google Scholar 

  68. Hsu JT, Kyo E, Chu CM, Tsuji T, Watanabe S (2011) Impact of calcification length ratio on the intervention for chronic total occlusions. Int J Cardiol 150(2):135–141. https://doi.org/10.1016/j.ijcard.2010.03.002

    Article  PubMed  Google Scholar 

  69. Opolski MP et al (2015) Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CT-RECTOR multicenter registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovasc Interv 8(2):257–267. https://doi.org/10.1016/j.jcin.2014.07.031

    Article  PubMed  Google Scholar 

  70. Soon KH et al (2007) CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion. J Intervent Cardiol 20(5):359–366. https://doi.org/10.1111/j.1540-8183.2007.00275.x

    Article  PubMed  Google Scholar 

  71. Choi J-H et al (2011) Three-dimensional quantitative volumetry of chronic total occlusion plaque using coronary multidetector computed tomography. Circ J 75(2):366–375. https://doi.org/10.1253/circj.CJ-09-0940

    Article  PubMed  Google Scholar 

  72. Li P, Gai L, Yang X, Sun Z, Jin Q (2010) Computed tomography angiography-guided percutaneous coronary intervention in chronic total occlusion. J Zhejiang Univ Sci B 11(8):568–574. https://doi.org/10.1631/jzus.B1001013

    Article  PubMed  PubMed Central  Google Scholar 

  73. Opolski MP, Achenbach S (2015) CT angiography for Revascularization of CTO: crossing the borders of diagnosis and treatment. JACC Cardiovasc Imaging 8(7):846–858. https://doi.org/10.1016/j.jcmg.2015.05.001

    Article  PubMed  Google Scholar 

  74. Ehara M et al (2009) Impact of multislice computed tomography to estimate difficulty in wire crossing in percutaneous coronary intervention for chronic total occlusion. J Invasive Cardiol 21(11):575–582

    PubMed  Google Scholar 

  75. Neumann F-J et al (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394

    Article  PubMed  Google Scholar 

  76. Rizik DG, Klassen KJ, Burke RF, Hodgson JM, Stone GW (2015) Interventional management of unprotected left main coronary artery disease: patient selection and technique optimization. J Intervent Cardiol 28(4):326–338. https://doi.org/10.1111/joic.12211

    Article  PubMed  Google Scholar 

  77. Alasnag M, Yaqoub L, Saati A, Al-Shaibi K (2019) Left main coronary artery interventions. Interv Cardiol Rev 14(3):124–130. https://doi.org/10.15420/icr.2019.10.R2

    Article  Google Scholar 

  78. Kočka V et al (2020) Optimal fluoroscopic projections of coronary ostia and bifurcations defined by computed tomography coronary angiography. JACC Cardiovasc Interv. https://doi.org/10.1016/j.jcin.2020.06.042

    Article  PubMed  Google Scholar 

  79. Palmerini T et al (2009) Ostial and midshaft lesions vs. bifurcation lesions in 1111 patients with unprotected left main coronary artery stenosis treated with drug-eluting stents: results of the survey from the Italian Society of Invasive Cardiology. Eur Heart J 30(17):2087–2094. https://doi.org/10.1093/eurheartj/ehp223

    Article  PubMed  Google Scholar 

  80. G. A. Rodríguez-Granillo, M. Rosales, C. Llauradó, T. Ivanc, and A. E. Rodríguez (2020) Guidance of percutaneous coronary interventions by multidetector row computed tomography coronary angiography. EuroIntervention. https://eurointervention.pcronline.com/article/guidance-of-percutaneous-coronary-interventions-by-multidetector-row-computed-tomography-coronary-angiography. Accessed Apr. 23, 2020

  81. S.-H. Lee et al. (2020) Prediction of side branch occlusions in percutaneous coronary interventions by coronary computed tomography: the CT bifurcation score as a novel tool for predicting intraprocedural side branch occlusion. EuroIntervention. https://eurointervention.pcronline.com/article/prediction-of-side-branch-occlusion-in-percutaneous-coronary-intervention-by-coronary-computed-tomography-angiography. Accessed Apr. 23, 2020

  82. Goldman S et al (2004) Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 44(11):2149–2156. https://doi.org/10.1016/j.jacc.2004.08.064

    Article  PubMed  Google Scholar 

  83. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28(3):616–626. https://doi.org/10.1016/0735-1097(96)00206-9

    Article  CAS  PubMed  Google Scholar 

  84. D. Jones et al. (2020) Computed tomography cardiac angiography for planning invasive angiographic procedures in patients with previous coronary artery bypass grafting. EuroIntervention. https://eurointervention.pcronline.com/article/an-observational-study-assessing-the-value-of-computed-tomography-cardiac-angiography-ctca-in-planning-invasive-angiographic-procedures-in-patients-with-previous-coronary-artery-bypass-grafting-cabg. Accessed Apr. 25, 2020

  85. Hamon M et al (2008) Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology 247(3):679–686. https://doi.org/10.1148/radiol.2473071132

    Article  PubMed  Google Scholar 

  86. Houslay ES, Lawton T, Sengupta A, Uren NG, McKillop G, Newby DE (2007) Non-invasive assessment of coronary artery bypass graft patency using 16-slice computed tomography angiography. J Cardiothorac Surg 2:27. https://doi.org/10.1186/1749-8090-2-27

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chan M et al (2016) A systematic review and meta-analysis of multidetector computed tomography in the assessment of coronary artery bypass grafts. Int J Cardiol 221:898–905. https://doi.org/10.1016/j.ijcard.2016.06.264

    Article  PubMed  Google Scholar 

  88. Barbero U et al (2016) 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: a meta-analysis. Int J Cardiol 216:52–57. https://doi.org/10.1016/j.ijcard.2016.04.156

    Article  PubMed  Google Scholar 

  89. Weustink AC et al (2009) Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging 2(7):816–824. https://doi.org/10.1016/j.jcmg.2009.02.010

    Article  PubMed  Google Scholar 

  90. de Graaf FR et al (2011) Diagnostic performance of 320-slice multidetector computed tomography coronary angiography in patients after coronary artery bypass grafting. Eur Radiol 21(11):2285. https://doi.org/10.1007/s00330-011-2192-5

    Article  PubMed  PubMed Central  Google Scholar 

  91. Romagnoli A et al (2010) Diagnostic accuracy of 64-slice CT in evaluating coronary artery bypass grafts and of the native coronary arteries. Radiol Med (Torino) 115(8):1167–1178. https://doi.org/10.1007/s11547-010-0580-6

    Article  CAS  Google Scholar 

  92. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A (2009) Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol 103(5):667–673. https://doi.org/10.1016/j.amjcard.2008.10.040

    Article  PubMed  Google Scholar 

  93. Jubran A, Willemink MJ, Nieman K (2019) Coronary CT in Patients with a history of PCI or CABG: helpful or harmful? Curr Cardiovasc Imaging Rep 12(6):19. https://doi.org/10.1007/s12410-019-9496-2

    Article  Google Scholar 

  94. Andreini D et al (2012) Diagnostic performance of two types of low radiation exposure protocol for prospective ECG-triggering multidetector computed tomography angiography in assessment of coronary artery bypass graft. Int J Cardiol 157(1):63–69. https://doi.org/10.1016/j.ijcard.2010.11.015

    Article  PubMed  Google Scholar 

  95. Onuma Y et al (2007) Evaluation of coronary artery bypass grafts and native coronary arteries using 64-slice multidetector computed tomography. Am Heart J 154(3):519–526. https://doi.org/10.1016/j.ahj.2007.04.054

    Article  PubMed  Google Scholar 

  96. Sahiner L et al (2012) Diagnostic accuracy of dual-source 64-slice multidetector computed tomography in evaluation of coronary artery bypass grafts. J Investig Med Off Publ Am Fed Clin Res 60(8):1180–1185. https://doi.org/10.2310/JIM.0b013e31826d901b

    Article  Google Scholar 

  97. Ropers D et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341. https://doi.org/10.1161/CIRCULATIONAHA.106.631051

    Article  PubMed  Google Scholar 

  98. Ward HB, Kelly RF, Weir EK (2009) Assessment of graft patency during coronary artery bypass graft surgery⁎⁎editorials published in JACC: cardiovascular Imaging reflect the views of the authors and do not necessarily represent the views of JACC: cardiovascular Imaging or the American College of Cardiology.: mitigating the Risk. JACC Cardiovasc Imaging 2(5):613–615. https://doi.org/10.1016/j.jcmg.2009.01.009

    Article  PubMed  Google Scholar 

  99. Rolf A et al (2013) Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion. Int J Cardiovasc Imaging 29(8):1819–1827. https://doi.org/10.1007/s10554-013-0258-y

    Article  PubMed  Google Scholar 

  100. Ghoshhajra BB et al (2017) Real-time fusion of coronary CT angiography with x-ray fluoroscopy during chronic total occlusion PCI. Eur Radiol 27(6):2464–2473. https://doi.org/10.1007/s00330-016-4599-5

    Article  PubMed  Google Scholar 

  101. Kim B-K et al (2016) Usefulness of intraprocedural coronary computed tomographic angiography during intervention for chronic total coronary occlusion. Am J Cardiol 117(12):1868–1876. https://doi.org/10.1016/j.amjcard.2016.03.032

    Article  PubMed  Google Scholar 

  102. Opolski MP et al (2016) First-in-man computed tomography-guided percutaneous revascularization of coronary chronic total occlusion using a wearable computer: proof of concept. Can J Cardiol 32(6):829.e11–829.e13. https://doi.org/10.1016/j.cjca.2015.08.009

    Article  Google Scholar 

  103. Bruckheimer E et al (2016) Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging 17(8):845–849. https://doi.org/10.1093/ehjci/jew087

    Article  PubMed  Google Scholar 

Download references

Funding

This article was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Escaned.

Ethics declarations

Conflicts of interest

Dr Nieves Gonzalo declared a potential conflict of interest on the official form-Speaker at educational events, Abbott and Boston scientific. The other authors declare that they have no conflict of interest.

Informed consent

All authors consent to participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennessey, B., Vera-Urquiza, R., Mejía-Rentería, H. et al. Contemporary use of coronary computed tomography angiography in the planning of percutaneous coronary intervention. Int J Cardiovasc Imaging 36, 2441–2459 (2020). https://doi.org/10.1007/s10554-020-02052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02052-8

Keywords

Navigation