Skip to main content
Log in

An assessment of the quality of optical coherence tomography image acquisition

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) provides excellent image resolution, however OCT optimal acquisition is essential but could be challenging owing to several factors. We sought to assess the quality of OCT pullbacks and identify the causes of suboptimal image acquisition. We evaluated 784 (404 pre-PCI; 380 post-PCI) coronary pullbacks from an anonymized OCT database from our Cardiovascular Imaging Core Laboratory. Imaging of the region-of-interest (ROI—lesion or stented segment plus references) was incomplete in 16.1% pullbacks, caused by pullback starting too proximal (63.7%), inappropriate pullback length (17.1%) and pullback starting too distal (11.4%). The quality of image acquisition was excellent in 36.3% pullbacks; whereas 4% pullbacks were unanalyzable. Pullback quality was most commonly affected by poor blood displacement from inadequate contrast volume (27.4%) or flow (25.6%), followed by artifacts (24.1%). Acquisition mode was ‘High-Resolution’ (54 mm) in 74.4% and ‘Survey’ (75 mm) in 25.6% of cases. The 54 mm mode was associated with incomplete ROI imaging (p = 0.020) and inadequate contrast volume (p = 0.035). We observed a substantial frequency of suboptimal image acquisition and identified its causes, most of which can be addressed with minor modifications during the procedure, ultimately improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OCT:

Optical coherence tomography

LAD:

Left anterior descending

ROI:

Region of interest

PCI:

Percutaneous coronary intervention

CIL:

Clear imaging length

CSL:

Clear stent length

STEMI:

ST segment elevation myocardial infarction

CTO:

Chronic total occlusion

References

  1. Kume T, Uemura S (2018) Current clinical applications of coronary optical coherence tomography. Cardiovasc Interv Ther 33(1):1–10. https://doi.org/10.1007/s12928-017-0483-8

    Article  CAS  PubMed  Google Scholar 

  2. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, dhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G, International Working Group for Intravascular Optical Coherence Tomography (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol 59(12):1058–1072. https://doi.org/10.1016/j.jacc.2011.09.079

    Article  PubMed  Google Scholar 

  3. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, Barlis P, Tearney GJ, Jang IK, Arbustini E, Bezerra HG, Ozaki Y, Bruining N, Dudek D, Radu M, Erglis A, Motreff P, Alfonso F, Toutouzas K, Gonzalo N, Tamburino C, Adriaenssens T, Pinto F, Serruys PW, Di Mario C, Expert's OCTRD (2012) Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J 33(20):2513–2520. https://doi.org/10.1093/eurheartj/ehs095

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, Tamburino C, Burzotta F, Trani C, Porto I, Ramazzotti V, Imola F, Manzoli A, Materia L, Cremonesi A, Albertucci M (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8(7):823–829. https://doi.org/10.4244/EIJV8I7A125

    Article  PubMed  Google Scholar 

  5. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609

    Article  PubMed  Google Scholar 

  6. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V (2015) OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging 8(2):198–209. https://doi.org/10.1016/j.jcmg.2014.12.005

    Article  PubMed  Google Scholar 

  7. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555. https://doi.org/10.1161/01.CIR.0000159354.43778.69

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  PubMed  Google Scholar 

  9. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, Barbato E, Akasaka T, Bezerra H, Holmes D (2015) Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 36(47):3346–3355. https://doi.org/10.1093/eurheartj/ehv367

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kubo T, Tanaka A, Kitabata H, Ino Y, Tanimoto T, Akasaka T (2012) Application of optical coherence tomography in percutaneous coronary intervention. Circ J 76(9):2076–2083

    Article  PubMed  Google Scholar 

  11. Chamie D, Bezerra HG, Attizzani GF, Yamamoto H, Kanaya T, Stefano GT, Fujino Y, Mehanna E, Wang W, Abdul-Aziz A, Dias M, Simon DI, Costa MA (2013) Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv 6(8):800–813. https://doi.org/10.1016/j.jcin.2013.03.019

    Article  PubMed  Google Scholar 

  12. Attizzani GF, Capodanno D, Ohno Y, Tamburino C (2014) Mechanisms, pathophysiology, and clinical aspects of incomplete stent apposition. J Am Coll Cardiol 63(14):1355–1367. https://doi.org/10.1016/j.jacc.2014.01.019

    Article  PubMed  Google Scholar 

  13. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PW, Expert's OCTRD (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415. https://doi.org/10.1093/eurheartj/ehp433

    Article  PubMed  Google Scholar 

  14. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2(11):1035–1046. https://doi.org/10.1016/j.jcin.2009.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoon JH, Di Vito L, Moses JW, Fearon WF, Yeung AC, Zhang S, Bezerra HG, Costa MA, Jang IK (2012) Feasibility and safety of the second-generation, frequency domain optical coherence tomography (FD-OCT): a multicenter study. J Invasive Cardiol 24(5):206–209

    PubMed  Google Scholar 

  16. Nakamura D, Wijns W, Price MJ, Jones MR, Barbato E, Akasaka T, Lee SW, Patel SM, Nishino S, Wang W, Gopinath A, Attizzani GF, Holmes D, Bezerra HG (2018) New volumetric analysis method for stent expansion and its correlation with final fractional flow reserve and clinical outcome: an ILUMIEN I substudy. JACC Cardiovasc Interv 11(15):1467–1478. https://doi.org/10.1016/j.jcin.2018.06.049

    Article  PubMed  Google Scholar 

  17. Raber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, Radu MD, Joner M, Yu B, Jia H, Meneveau N, de la Torre Hernandez JM, Escaned J, Hill J, Prati F, Colombo A, Di Mario C, Regar E, Capodanno D, Wijns W, Byrne RA, Guagliumi G (2018) Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 14(6):656–677. https://doi.org/10.4244/EIJY18M06_01

    Article  PubMed  Google Scholar 

  18. Katwal AB, Lopez JJ (2015) Technical considerations and practical guidance for intracoronary optical coherence tomography. Interv Cardiol Clin 4(3):239–249. https://doi.org/10.1016/j.iccl.2015.02.005

    Article  PubMed  Google Scholar 

  19. Frick K, Michael TT, Alomar M, Mohammed A, Rangan BV, Abdullah S, Grodin J, Hastings JL, Banerjee S, Brilakis ES (2014) Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Catheter Cardiovasc Interv 84(5):727–731. https://doi.org/10.1002/ccd.25092

    Article  PubMed  Google Scholar 

  20. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Takarada S, Kubo T, Kimura K, Tanaka A, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2012) Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J 76(4):922–927

    Article  PubMed  Google Scholar 

  21. McCabe JM, Croce KJ (2012) Optical coherence tomography. Circulation 126(17):2140–2143. https://doi.org/10.1161/CIRCULATIONAHA.112.117143

    Article  PubMed  Google Scholar 

  22. Li X, Villard JW, Ouyang Y, Michalek JE, Jabara R, Sims D, Kemp N, Glynn T, Banas C, Bailey SR, Feldman MD (2011) Safety and efficacy of frequency domain optical coherence tomography in pigs. EuroIntervention 7(4):497–504. https://doi.org/10.4244/EIJV7I4A80

    Article  PubMed  Google Scholar 

  23. Barlis P, Schmitt JM (2009) Current and future developments in intracoronary optical coherence tomography imaging. EuroIntervention 4(4):529–533

    Article  PubMed  Google Scholar 

  24. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, Desjardins AE, Oh WY, Bartlett LA, Rosenberg M, Bouma BE (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1(6):752–761. https://doi.org/10.1016/j.jcmg.2008.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saito T, Date H, Taniguchi I, Hokimoto S, Yamamoto N, Nakamura S, Ishibashi F, Noda K, Oshima S (1999) Evaluation of new 4 French catheters by comparison to 6 French coronary artery images. J Invasive Cardiol 11(1):13–20

    CAS  PubMed  Google Scholar 

  26. Imola F, Mallus MT, Ramazzotti V, Manzoli A, Pappalardo A, Di Giorgio A, Albertucci M, Prati F (2010) Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention 6(5):575–581. https://doi.org/10.4244/EIJV6I5A97

    Article  PubMed  Google Scholar 

  27. Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Kitabata H, Kubo T, Nakamura N, Hirata K, Tanaka A, Mizukoshi M, Akasaka T (2010) Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 75(2):202–206. https://doi.org/10.1002/ccd.22273

    Article  PubMed  Google Scholar 

  28. Regar E, van Ditzhuijzen N, van der Sijde J, Ligthart J, Witberg K, van Soest G, Karanasos A (2016) Identifying stable coronary plaques with OCT technology. Contin Cardiol Educ 2(2):77–88. https://doi.org/10.1002/cce2.27

    Article  Google Scholar 

  29. Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C et al (1991) Optical coherence tomography. Science 254(5035):1178–1181. https://doi.org/10.1126/science.1957169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elder Iarossi Zago.

Ethics declarations

Conflict of interest

Dr. Bezerra receives consulting fees from Abbott Vascular, Inc. Other authors report no relevant conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iarossi Zago, E., Samdani, A.J., Pereira, G.T.R. et al. An assessment of the quality of optical coherence tomography image acquisition. Int J Cardiovasc Imaging 36, 1013–1020 (2020). https://doi.org/10.1007/s10554-020-01795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01795-8

Keywords

Navigation