Skip to main content

Advertisement

Log in

A review of serial coronary computed tomography angiography (CTA) to assess plaque progression and therapeutic effect of anti-atherosclerotic drugs

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Change in coronary artery plaque on serial catheter intravascular ultrasound (IVUS) is an established technique to monitor the therapeutic effect of drugs on coronary atherosclerosis. Recent advances in coronary computed tomography angiography (CTA) now allow for non-invasive assessment of change in coronary plaque. Because coronary CTA is noninvasive, it enables clinical trials with lower-risk populations, higher retention rates, and lower costs. This review presents an overview of serial coronary CTA as a noninvasive imaging technique to gauge the therapeutic effect of anti-atherosclerotic therapies. Furthermore, it reviews the increasing use of serial CTA as an imaging endpoint in completed and ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, Aboyans V, Abraham JP, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NM (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England) 385:117–171. https://doi.org/10.1016/S0140-6736(14)61682-2

    Article  Google Scholar 

  2. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185. https://doi.org/10.1016/S0167-6296(02)00126-1

    Article  PubMed  Google Scholar 

  3. Tardif J-C, Heinonen T, Orloff D, Libby P (2006) Vascular biomarkers and surrogates in cardiovascular disease. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.105.598987

    Article  PubMed  Google Scholar 

  4. Nicholls SJ, Hsu A, Wolski K et al (2010) Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol 55:2399–2407. https://doi.org/10.1016/j.jacc.2010.02.026

    Article  PubMed  Google Scholar 

  5. Hoffmann U, Ferencik M, Udelson JE et al (2017) Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE trial (prospective multicenter imaging study for evaluation of chest pain). Circulation 135:2320–2332. https://doi.org/10.1161/CIRCULATIONAHA.116.024360

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee S-E, Sung JM, Rizvi A et al (2018) Quantification of coronary atherosclerosis in the assessment of coronary artery disease. Circ Cardiovasc Imaging 11:e007562. https://doi.org/10.1161/CIRCIMAGING.117.007562

    Article  PubMed  Google Scholar 

  7. Andreini D, Magnoni M, Conte E et al (2019) Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2019.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deseive S, Straub R, Kupke M et al (2018) Quantification of coronary low-attenuation plaque volume for long-term prediction of cardiac events and reclassification of patients. J Cardiovasc Comput Tomogr 12:118–124. https://doi.org/10.1016/j.jcct.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  9. Hell MM, Motwani M, Otaki Y et al (2017) Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. Eur Heart J Cardiovasc Imaging 18:1331–1339. https://doi.org/10.1093/ehjci/jex183

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huisman J, Hartmann M, von Birgelen C et al (2011) Serial intravascular ultrasound assessment of changes in coronary atherosclerotic plaque dimensions and composition: an update. Eur J Echocardiogr 12:313–321. https://doi.org/10.1093/ejechocard/jer017

    Article  PubMed  Google Scholar 

  11. Maurovich-Horvat P, Ferencik M, Voros S et al (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11:390–402. https://doi.org/10.1038/nrcardio.2014.60

    Article  PubMed  Google Scholar 

  12. Tsujita K, Sugiyama S, Sumida H et al (2015) Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol 66:495–507. https://doi.org/10.1016/j.jacc.2015.05.065

    Article  PubMed  Google Scholar 

  13. Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235. https://doi.org/10.1056/NEJMoa1002358

    Article  CAS  PubMed  Google Scholar 

  14. Garcìa-Garcìa HM, Gogas BD, Serruys PW, Bruining N (2011) IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging 27:215–224. https://doi.org/10.1007/s10554-010-9789-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burgstahler C, Reimann A, Beck T et al (2007) Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol 42:189–195. https://doi.org/10.1097/01.rli.0000254408.96355.85

    Article  CAS  PubMed  Google Scholar 

  16. Nissen SE, Nicholls SJ, Sipahi I et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565. https://doi.org/10.1001/jama.295.13.jpc60002

    Article  CAS  PubMed  Google Scholar 

  17. Wakabayashi K, Nozue T, Yamamoto S et al (2016) Efficacy of statin therapy in inducing coronary plaque regression in patients with low baseline cholesterol levels. J Atheroscler Thromb 23:1055–1066. https://doi.org/10.5551/jat.34660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mintz GS, Nissen SE, Anderson WD et al (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus)31When citing this document, the American College of Cardiology would appreciate the follow. J Am Coll Cardiol 37:1478–1492. https://doi.org/10.1016/S0735-1097(01)01175-5

    Article  CAS  PubMed  Google Scholar 

  19. Noguchi T, Nakao K, Asaumi Y et al (2018) Noninvasive coronary plaque imaging. J Atheroscler Thromb 25:281–293. https://doi.org/10.5551/jat.RV17019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nissen SE, Tuzcu EM, Libby P et al (2004) Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292:2217–2225. https://doi.org/10.1001/jama.292.18.2217

    Article  CAS  PubMed  Google Scholar 

  21. Nicholls SJ, Ballantyne CM, Barter PJ et al (2011) Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 365:2078–2087. https://doi.org/10.1056/NEJMoa1110874

    Article  CAS  PubMed  Google Scholar 

  22. Kashiwagi M, Tanaka A, Kitabata H et al (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2:1412–1419. https://doi.org/10.1016/j.jcmg.2009.09.012

    Article  PubMed  Google Scholar 

  23. Sandfort V, Lima JAC, Bluemke DA (2015) Noninvasive imaging of atherosclerotic plaque progression: status of coronary computed tomography angiography. Circ Cardiovasc Imaging 8:e003316–e003316. https://doi.org/10.1161/CIRCIMAGING.115.003316

    Article  PubMed  Google Scholar 

  24. Yabushita H, Bouma BE, Houser SL et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  Google Scholar 

  25. Habara M, Nasu K, Terashima M et al (2014) Impact on optical coherence tomographic coronary findings of fluvastatin alone versus fluvastatin + ezetimibe. Am J Cardiol 113:580–587. https://doi.org/10.1016/j.amjcard.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann U, Truong QA, Schoenfeld DA et al (2012) Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 367:299–308. https://doi.org/10.1056/NEJMoa1201161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hospital outpatient prospective payment system centers for medicare & medicaid services no title

  28. Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5:1243–1252. https://doi.org/10.1016/j.jcmg.2012.03.019

    Article  PubMed  Google Scholar 

  29. Schepis T, Marwan M, Pflederer T et al (2010) Quantification of non-calcified coronary atherosclerotic plaques with dual-source computed tomography: comparison with intravascular ultrasound. Heart 96:610–615. https://doi.org/10.1136/hrt.2009.184226

    Article  PubMed  Google Scholar 

  30. Liu T, Maurovich-Horvat P, Mayrhofer T et al (2018) Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial. Int J Cardiovasc Imaging 34:311–319. https://doi.org/10.1007/s10554-017-1228-6

    Article  PubMed  Google Scholar 

  31. Ferencik M, Schlett CL, Ghoshhajra BB et al (2012) A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol 110:183–189. https://doi.org/10.1016/j.amjcard.2012.02.066

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nakazato R, Shalev A, Doh J-H et al (2013) Quantification and characterisation of coronary artery plaque volume and adverse plaque features by coronary computed tomographic angiography: a direct comparison to intravascular ultrasound. Eur Radiol 23:2109–2117. https://doi.org/10.1007/s00330-013-2822-1

    Article  PubMed  Google Scholar 

  33. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247. https://doi.org/10.1016/j.jacc.2003.10.059

    Article  PubMed  Google Scholar 

  34. Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4:537–548. https://doi.org/10.1016/j.jcmg.2011.03.006

    Article  PubMed  Google Scholar 

  35. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  CAS  Google Scholar 

  36. Pundziute G, Schuijf JD, Jukema JW et al (2008) Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv 1:176–182. https://doi.org/10.1016/j.jcin.2008.01.007

    Article  PubMed  Google Scholar 

  37. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17. https://doi.org/10.1161/01.CIR.0000111517.69230.0F

    Article  PubMed  Google Scholar 

  38. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  Google Scholar 

  39. Min JK, Dunning A, Lin FY et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicen). J Am Coll Cardiol 58:849–860. https://doi.org/10.1016/j.jacc.2011.02.074

    Article  PubMed  Google Scholar 

  40. Achenbach S (2008) Quantification of coronary artery stenoses by computed tomography. JACC Cardiovasc Imaging 1:472–474. https://doi.org/10.1016/j.jcmg.2008.05.008

    Article  PubMed  Google Scholar 

  41. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643. https://doi.org/10.1161/01.CIR.0000145614.07427.9F

    Article  PubMed  Google Scholar 

  42. Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132. https://doi.org/10.1016/j.jacc.2004.09.074

    Article  PubMed  Google Scholar 

  43. Kuettner A, Beck T, Drosch T et al (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91:938–941. https://doi.org/10.1136/hrt.2004.044735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng V, Gutstein A, Wolak A et al (2008) Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging 1:460–471. https://doi.org/10.1016/j.jcmg.2008.05.006

    Article  PubMed  Google Scholar 

  45. De Rosa R, Vasa-Nicotera M, Leistner DM et al (2017) Coronary atherosclerotic plaque characteristics and cardiovascular risk factors- insights from an optical coherence tomography study. Circ J 81:1165–1173. https://doi.org/10.1253/circj.CJ-17-0054

    Article  PubMed  Google Scholar 

  46. Nozue T, Takamura T, Fukui K et al (2018) Changes in coronary atherosclerosis, composition, and fractional flow reserve evaluated by coronary computed tomography angiography in patients with type 2 diabetes. Int J Cardiol Hear Vasc 19:46–51. https://doi.org/10.1016/j.ijcha.2018.04.005

    Article  Google Scholar 

  47. Ambrose JA, Tannenbaum MA, Alexopoulos D et al (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62

    Article  CAS  Google Scholar 

  48. Lo J, Lu MT, Ihenachor EJ et al (2015) Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Lancet HIV 2:e52–63. https://doi.org/10.1016/S2352-3018(14)00032-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nakazato R, Shalev A, Doh J-H et al (2013) Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol 62:460–467. https://doi.org/10.1016/j.jacc.2013.04.062

    Article  PubMed  Google Scholar 

  50. Fleg JL, Stone GW, Fayad ZA et al (2012) Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imaging 5:941–955. https://doi.org/10.1016/j.jcmg.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kitagawa T, Yamamoto H, Horiguchi J et al (2009) Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging 2:153–160. https://doi.org/10.1016/j.jcmg.2008.09.015

    Article  PubMed  Google Scholar 

  52. Puchner SB, Liu T, Mayrhofer T et al (2014) High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol 64:684–692. https://doi.org/10.1016/j.jacc.2014.05.039

    Article  PubMed  PubMed Central  Google Scholar 

  53. Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375. https://doi.org/10.1056/NEJM198705283162204

    Article  CAS  PubMed  Google Scholar 

  54. Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  55. Galonska M, Ducke F, Kertesz-Zborilova T et al (2008) Characterization of atherosclerotic plaques in human coronary arteries with 16-slice multidetector row computed tomography by analysis of attenuation profiles. Acad Radiol 15:222–230. https://doi.org/10.1016/j.acra.2007.09.007

    Article  PubMed  Google Scholar 

  56. Marwan M, Taher MA, El Meniawy K et al (2011) In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis 215:110–115. https://doi.org/10.1016/j.atherosclerosis.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  57. Li Z, Hou Z, Yin W et al (2016) Effects of statin therapy on progression of mild noncalcified coronary plaque assessed by serial coronary computed tomography angiography: a multicenter prospective study. Am Heart J 180:29–38. https://doi.org/10.1016/j.ahj.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  58. Foldyna B, Lo J, Mayrhofer T et al (2019) Individual coronary plaque changes on serial CT angiography: within-patient heterogeneity, natural history, and statin effects in HIV. J Cardiovasc Comput Tomogr. https://doi.org/10.1016/j.jcct.2019.08.011

    Article  PubMed  Google Scholar 

  59. Tardif J-C, Lallier PL, Ibrahim R et al (2010) Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome. Circ Cardiovasc Imaging 3:298–307. https://doi.org/10.1161/CIRCIMAGING.110.937169

    Article  PubMed  Google Scholar 

  60. Matsumoto S, Ibrahim R, Grégoire JC et al (2017) Effect of treatment with 5-lipoxygenase inhibitor VIA-2291 (atreleuton) on coronary plaque progression: a serial CT angiography study. Clin Cardiol 40:210–215. https://doi.org/10.1002/clc.22646

    Article  PubMed  Google Scholar 

  61. Hauser TH, Salastekar N, Schaefer EJ et al (2016) Effect of targeting inflammation with salsalate: the TINSAL-CVD randomized clinical trial on progression of coronary plaque in overweight and obese patients using statins. JAMA Cardiol 1:413–423. https://doi.org/10.1001/jamacardio.2016.0605

    Article  PubMed  Google Scholar 

  62. Budoff MJ, Ellenberg SS, Lewis CE et al (2017) Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA 317:708–716. https://doi.org/10.1001/jama.2016.21043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsumoto S, Nakanishi R, Li D et al (2016) Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with metabolic syndrome in a prospective randomized double-blind study. J Nutr 146:427S–432S. https://doi.org/10.3945/jn.114.202424

    Article  CAS  PubMed  Google Scholar 

  64. Lee J, Nakanishi R, Li D et al (2018) Randomized trial of rivaroxaban versus warfarin in the evaluation of progression of coronary atherosclerosis. Am Heart J 206:127–130

    Article  CAS  Google Scholar 

  65. ClinicalTrials.gov (2019) MedImmune LLC T in MI (TIMI) SG No Title. https://clinicaltrials.gov/ct2/show/NCT03578809. Accessed 13 Feb 2019

  66. Rousset X, Shamburek R, Vaisman B et al (2011) Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr Atheroscler Rep 13:249–256. https://doi.org/10.1007/s11883-011-0171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbert JM, Fitch KV, Grinspoon SK (2015) HIV-related cardiovascular disease, statins, and the REPRIEVE trial. Top Antivir Med 23:146–149

    PubMed  Google Scholar 

  68. Effect of PCSK9 Inhibition on Cardiovascular Risk in Treated HIV Infection (EPIC-HIV Study) (EPIC-HIV). https://clinicaltrials.gov/ct2/show/NCT03207945. Accessed 12 Feb 2019

  69. Symons R, Morris JZ, Wu CO et al (2016) Coronary CT angiography: variability of CT scanners and readers in measurement of plaque volume. Radiology 281:737–748. https://doi.org/10.1148/radiol.2016161670

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nissen SE, Tuzcu EM, Schoenhagen P, Brown GC (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis. Evid Based Eye Care 5:228–229. https://doi.org/10.1097/01.ieb.0000142773.91809.e5

    Article  Google Scholar 

  71. Inoue K, Motoyama S, Sarai M et al (2010) Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging 3:691–698. https://doi.org/10.1016/j.jcmg.2010.04.011

    Article  PubMed  Google Scholar 

  72. Auscher S, Heinsen L, Nieman K et al (2015) Effects of intensive lipid-lowering therapy on coronary plaques composition in patients with acute myocardial infarction: assessment with serial coronary CT angiography. Atherosclerosis 241:579–587. https://doi.org/10.1016/j.atherosclerosis.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  73. Lee S-E, Chang H-J, Sung JM et al (2018) Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc Imaging 11:1475–1484. https://doi.org/10.1016/j.jcmg.2018.04.015

    Article  PubMed  Google Scholar 

  74. Hoffmann H, Frieler K, Schlattmann P et al (2010) Influence of statin treatment on coronary atherosclerosis visualised using multidetector computed tomography. Eur Radiol 20:2824–2833. https://doi.org/10.1007/s00330-010-1880-x

    Article  PubMed  Google Scholar 

  75. Oberoi S, Meinel FG, Schoepf UJ et al (2014) Reproducibility of noncalcified coronary artery plaque burden quantification from coronary CT angiography across different image analysis platforms. AJR Am J Roentgenol 202:W43–W49. https://doi.org/10.2214/AJR.13.11225

    Article  PubMed  Google Scholar 

  76. Achenbach S, Boehmer K, Pflederer T et al (2010) Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4:110–115. https://doi.org/10.1016/j.jcct.2010.01.013

    Article  PubMed  Google Scholar 

  77. Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431. https://doi.org/10.1007/s00330-005-2697-x

    Article  PubMed  Google Scholar 

  78. Suzuki S, Furui S, Kuwahara S et al (2006) Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: effect of wall thickness, density of contrast medium, and measurement point. Invest Radiol 41:510–515. https://doi.org/10.1097/01.rli.0000209662.24569.c7

    Article  PubMed  Google Scholar 

  79. Sande EPS, Martinsen ACT, Hole EO, Olerud HM (2010) Interphantom and interscanner variations for Hounsfield units–establishment of reference values for HU in a commercial QA phantom. Phys Med Biol 55:5123–5135. https://doi.org/10.1088/0031-9155/55/17/015

    Article  PubMed  Google Scholar 

  80. Versteylen MO, Kietselaer BL, Dagnelie PC et al (2013) Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol 61:2296–2305. https://doi.org/10.1016/j.jacc.2013.02.065

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Taron.

Ethics declarations

Conflict of interest

Dr. Lu reported research funding as a co-investigator to MGH from Kowa Company Limited and Medimmune/Astrazeneca and receiving personal fees from PQBypass unrelated to this work. He reports a research grant from the Nvidia Corporation Academic Program. Dr. Hoffmann reported receiving research support on behalf of his institution from Duke University (Abbott), HeartFlow, Kowa Company Limited, and MedImmune/Astrazeneca; and receiving consulting fees from Duke University (NIH), and Recor Medical unrelated to this research. Dr. Taron was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TA 1438/1-1.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taron, J., Lee, S., Aluru, J. et al. A review of serial coronary computed tomography angiography (CTA) to assess plaque progression and therapeutic effect of anti-atherosclerotic drugs. Int J Cardiovasc Imaging 36, 2305–2317 (2020). https://doi.org/10.1007/s10554-020-01793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01793-w

Keywords

Navigation