Skip to main content
Log in

Pooled summary of native T1 value and extracellular volume with MOLLI variant sequences in normal subjects and patients with cardiovascular disease

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

T1 mapping by cardiac magnetic resonance (CMR) allows detection of abnormal myocardium. A number of myocardial abnormalities affects the signal captured in T1 mapping. We performed a systematic review and meta-analysis of native T1 and extracellular volume (ECV) in subjects with and without cardiac disease (1) to determine the normal ranges of T1 values and ECV by sequences as well as parameters influencing them, and (2) to summarize the differences in T1 values and ECV of the diseases relative to the normal ranges. Three databases (EMBASE, SCOPUS, and MEDLINE) were systematically searched for native T1 time and ECV. Only human studies with a sample size of ≥ 20 subjects were included. A random effect model was used to pool data. The 69 selected articles included 1954 healthy subjects and 3186 with disease. T1 of normal healthy was different among MOLLI variants: in 1.5T sequences, ShMOLLI had the shortest (944 ms [95% confidence interval 925, 963]), followed by MOLLI 3(3)3(3)5 flip-angle 50°, 967 [959, 975] and flip-angle 35°, 969 [951, 988]. 3T had longer T1 than 1.5T by approximately 100–200 ms. ECV of the normal healthy was consistent among the studies (ranging from 25 to 27%), irrespective of subjects’ factors, sequences, vendors, and contrast type. Many diseases demonstrated longer native T1 than normal subjects, but T1 was shorter in Fabry disease and iron overload. In contrast, all disease states showed either normal or increased ECV. Diagnostic accuracy of native T1 time was minimally affected by the difference in the sequences. ECV is less influenced by methodology than T1 time among normal subjects. Different myocardial diseases are associated with shorter or longer T1 times, whereas ECV is consistently increased independent of the underlying pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AS:

Aortic stenosis

CI:

Confidence interval

CMR:

Cardiac magnetic resonance

ECV:

Extracellular volume fraction

HCM:

Hypertrophy cardiomyopathy

LVEDVi:

Left ventricular end-diastolic ejection fraction indexed

LVEF:

Left ventricular ejection fraction

MOLLI:

Modified look-locker imaging

PRISMA:

Systematic reviews and meta-analysis

ShMOLLI:

Shortened modified look-locker imaging

References

  1. Puntmann VO, Peker E, Chandrashekhar Y, Nagel E (2016) T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res 119:277–299

    CAS  PubMed  Google Scholar 

  2. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Society for Cardiovascular Magnetic Resonance I and Cardiovascular Magnetic Resonance working Group of the European Society of C. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92

    PubMed  PubMed Central  Google Scholar 

  3. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(264–9):W64

    Google Scholar 

  4. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  5. aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis E, Korosoglou G, Katus HA, Steen H (2015) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16:210–216

    PubMed  Google Scholar 

  6. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36:244–251

    PubMed  Google Scholar 

  7. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, Francis JM, Karamitsos TD, Prendergast BD, Robson MD, Neubauer S, Moon JC, Myerson SG (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937

    PubMed  PubMed Central  Google Scholar 

  8. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, Petrie MC, Eteiba H, Lindsay M, Watkins S, Hood S, Davie A, Mahrous A, Sattar N, Welsh P, Tzemos N, Radjenovic A, Ford I, Oldroyd KG, Berry C (2015) Pathophysiology of LV remodeling in survivors of STEMI inflammation, remote myocardium, and prognosis. JACC 8:779–789

    PubMed  Google Scholar 

  9. Chen YY, Zhang WG, Yang S, Yun H, Deng SM, Fu CX, Zeng MS, Jin H, Guo L (2015) Extracellular volume fraction in coronary chronic total occlusion patients. Int J Cardiovasc Imaging 31:1211–1221

    PubMed  Google Scholar 

  10. Chen Z, Sohal M, Sammut E, Child N, Jackson T, Claridge S, Cooklin M, O’Neill M, Wright M, Gill J, Chiribiri A, Schaeffter T, Carr-White G, Razavi R, Rinaldi CA (2015) Focal but not diffuse myocardial fibrosis burden quantification using cardiac magnetic resonance imaging predicts left ventricular reverse modeling following cardiac resynchronization therapy. J Cardiovasc Electrophysiol 27(2):203–209

    PubMed  Google Scholar 

  11. Chin CWL, Semple S, Malley T, White AC, Mirsadraee S, Weale PJ, Prasad S, Newby DE, Dweck MR (2014) Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 15:556–565

    PubMed  Google Scholar 

  12. Chin CWL, Shah ASV, McAllister DA, Cowell SJ, Alam S, Langrish JP, Strachan FE, Hunter AL, Choy AM, Lang CC, Walker S, Boon NA, Newby DE, Mills NL, Dweck MR (2014) High-sensitivity troponin i concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur Heart J 35:2312–2321

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, Plein S, Yu CY, Otton J, Kidambi A, McDiarmid A, Broadbent D, Higgins DM, Schnackenburg B, Foote L, Cummins C, Nagel E, Puntmann VO (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69

    PubMed  PubMed Central  Google Scholar 

  14. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, Mahmod M, Cochlin L, Karamitsos TD, Robson MD, Watkins H, Neubauer S (2012) Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5:726–733

    PubMed  Google Scholar 

  15. Doltra A, Messroghli D, Hassel JH, Schnackenburg B, Stawowy P, Gebker R, Schneeweis C, Berger A, Fleck E, Kelle S (2014) Potential change of diffuse myocardial fibrosis in patients undergoing renal denervation: preliminary results of a prospective cardiac magnetic resonance study. Eur Heart J 35:1190

    Google Scholar 

  16. Edwards NC, Moody WE, Yuan M, Hayer MK, Ferro CJ, Townend JN, Steeds RP (2015) Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am J Cardiol 115:1311–1317

    PubMed  Google Scholar 

  17. Edwards NC, Moody WE, Yuan M, Warfield AT, Cramb R, Paisey RB, Geberhiwot T, Steeds RP (2015) Diffuse left ventricular interstitial fibrosis is associated with sub-clinical myocardial dysfunction in Alström Syndrome: an observational study. Orphanet J Rare Dis 10(1):83

    PubMed  PubMed Central  Google Scholar 

  18. Edwards NC, Moody WE, Yuan M, Weale P, Neal D, Townend JN, Steeds RP (2014) Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ Cardiovasc Imaging 7:946–953

    PubMed  Google Scholar 

  19. Ertel A, Pratt D, Kellman P, Leung S, Bandettini P, Long LM, Young M, Nelson C, Arai AE, Druey KM (2015) Increased myocardial extracellular volume in active idiopathic systemic capillary leak syndrome. J Cardiovasc Magn Reson 17:76

    PubMed  PubMed Central  Google Scholar 

  20. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi NA, Holloway C, Choudhury R, Kardos A, Robson MD, Friedrich MG, Neubauer S (2014) Native T1-mapping displays the extent and non-ischemic patterns of injury in acute myocarditis without the need for contrast agents. J Cardiovasc Magn Reson 16:O6

    PubMed Central  Google Scholar 

  21. Ferreira VM, Piechnik SK, Dallarmellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42

    PubMed  PubMed Central  Google Scholar 

  22. Florian A, Ludwig A, Rosch S, Yildiz H, Sechtem U, Yilmaz A (2014) Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 15:1004–1012

    PubMed  Google Scholar 

  23. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, Pica S, Castelletti S, Piechnik SK, Robson MD, Gilbertson JA, Rowczenio D, Hutt DF, Lachmann HJ, Wechalekar AD, Whelan CJ, Gillmore JD, Hawkins PN, Moon JC (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7:157–165

    PubMed  Google Scholar 

  24. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, Maestrini V, Barcella W, Rosmini S, Bulluck H, Sayed RH, Patel K, Mamhood S, Bucciarelli-Ducci C, Whelan CJ, Herrey AS, Lachmann HJ, Wechalekar AD, Manisty CH, Schelbert EB, Kellman P, Gillmore JD, Hawkins PN, Moon JC (2015) Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132:1570–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, Piechnik SK, Neubauer S, Roberts N, Moon JC (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 14:88

    PubMed  PubMed Central  Google Scholar 

  26. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, Gebker R, Doltra A, Kelle S, Khan S, Rogers T, Arroyo Ucar E, Cummins C, Carr-White G, Nagel E, Puntmann VO (2015) T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 8:e003285

    PubMed  Google Scholar 

  27. Hong YJ, Park CH, Kim YJ, Hur J, Lee HJ, Hong SR, Suh YJ, Greiser A, Paek MY, Choi BW, Kim TH (2015) Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging 31(Suppl 1):115–122

    PubMed  Google Scholar 

  28. Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, Martin J, Fenwick J, Marwick T (2011) Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy: a multi-modality study. Eur Heart J 32:505

    Google Scholar 

  29. Jellis CL, Sacre JW, Wright J, Jenkins C, Haluska B, Jeffriess L, Martin J, Marwick TH (2014) Biomarker and imaging responses to spironolactone in subclinical diabetic cardiomyopathy. Eur Heart J Cardiovasc Imaging 15:776–786

    PubMed  Google Scholar 

  30. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6:488–497

    PubMed  Google Scholar 

  31. Kato S, Foppa M, Roujol S, Basha T, Berg S, Kissinger KV, Goddu B, Manning WJ, Nezafat R (2016) Left ventricular native T1 time and the risk of atrial fibrillation recurrence after pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Int J Cardiol 203:848–854

    PubMed  Google Scholar 

  32. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 14:26

    PubMed  PubMed Central  Google Scholar 

  33. Kawel-Boehm N, Buser TD, Greiser A, Bieri O, Bremerich J, Santini F (2014) In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI. Int J Cardiovasc Imaging 30:323–328

    CAS  PubMed  Google Scholar 

  34. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    PubMed  PubMed Central  Google Scholar 

  35. Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, Epstein FH, Kramer CM, Salerno M (2015) Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging 8:172–180

    PubMed  PubMed Central  Google Scholar 

  36. Lee SP, Lee W, Lee JM, Park EA, Kim HK, Kim YJ, Sohn DW (2015) Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology 274:359–369

    PubMed  Google Scholar 

  37. Liu CY, Bluemke DA, Gerstenblith G, Zimmerman SL, Li J, Zhu H, Lai S, Lai H (2014) Reference values of myocardial structure, function, and tissue composition by cardiac magnetic resonance in healthy African-Americans at 3T and their relations to serologic and cardiovascular risk factors. Am J Cardiol 114:789–795

    PubMed  PubMed Central  Google Scholar 

  38. Liu S, Han J, Nacif MS, Jones J, Kawel N, Kellman P, Sibley CT, Bluemke DA (2012) Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 14:90

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Luetkens JA, Doerner J, Thomas DK, Dabir D, Gieseke J, Sprinkart AM, Fimmers R, Stehning C, Homsi R, Schwab JO, Schild H, Naehle CP (2014) Acute myocarditis: multiparametric cardiac MR imaging. Radiology 273:383–392

    PubMed  Google Scholar 

  40. Luetkens JA, Homsi R, Sprinkart AM, Doerner J, Dabir D, Kuetting DL, Block W, Andrie R, Stehning C, Fimmers R, Gieseke J, Thomas DK, Schild HH, Naehle CP (2016) Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 17:154–161

    PubMed  Google Scholar 

  41. Mordi I, Carrick D, Bezerra H, Tzemos N (2015) T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging 17:797–803

    PubMed  Google Scholar 

  42. Ntusi NAB, Piechnik SK, Francis JM, Ferreira VM, Matthews PM, Robson MD, Wordsworth PB, Neubauer S, Karamitsos TD (2015) Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 Mapping. JACC 8:526–536

    PubMed  Google Scholar 

  43. Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, Hofman MB, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 15:13

    PubMed  PubMed Central  Google Scholar 

  44. Puntmann VO, D’Cruz D, Smith Z, Pastor A, Choong P, Voigt T, Carr-White G, Sangle S, Schaeffter T, Nagel E (2013) Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 6:295–301

    PubMed  Google Scholar 

  45. Puntmann VO, Ucar EA, Baydes RH, Ngah NB, Kuo YS, Dabir D, Macmillan A, Cummins C, Higgins DM, Gaddum N, Chowienczyk P, Plein S, Carr-White G, Nagel E (2014) Aortic stiffness and interstitial myocardial fibrosis by native t1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension 64:762–768

    CAS  PubMed  Google Scholar 

  46. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffter T, Nagel E (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6:475–484

    PubMed  Google Scholar 

  47. Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjäger M (2014) Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: Correlations and blood normalization. Radiology 271:365–372

    PubMed  Google Scholar 

  48. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK, Flett AS, Robson MD, Neubauer S, Ariti C, Arai A, Kellman P, Yamamura J, Schoennagel BP, Shah F, Davis B, Trompeter S, Walker M, Porter J, Moon JC (2015) Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging 41:1505–1511

    PubMed  Google Scholar 

  49. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC (2013) Identification and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6:392–398

    PubMed  Google Scholar 

  50. Singh A, Horsfield MA, Bekele S, Khan JN, Greiser A, McCann GP (2015) Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging 16:763–770

    PubMed  Google Scholar 

  51. Soslow JH, Damon SM, Crum K, Lawson MA, Slaughter JC, Xu M, Arai AE, Sawyer DB, Parra DA, Damon BM, Markham LW (2016) Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson 18:5

    PubMed  PubMed Central  Google Scholar 

  52. Tessa C, Diciotti S, Landini N, Lilli A, Del Meglio J, Salvatori L, Giannelli M, Greiser A, Vignali C, Casolo G (2015) Myocardial T1 and T2 mapping in diastolic and systolic phase. Int J Cardiovasc Imaging 31:1001–1010

    PubMed  Google Scholar 

  53. Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, Barison A, Patel V, Herrey AS, Davies C, Caulfield MJ, Petersen SE, Moon JC (2015) Extracellular volume quantification in isolated hypertension—changes at the detectable limits? J Cardiovasc Magn Reson 17:74

    PubMed  PubMed Central  Google Scholar 

  54. van Ooij P, Allen BD, Contaldi C, Garcia J, Collins J, Carr J, Choudhury L, Bonow RO, Barker AJ, Markl M (2016) 4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging 43:107–114

    PubMed  Google Scholar 

  55. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J (2013) Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 15:53

    Google Scholar 

  56. Zhang Y, Corona-Villalobos CP, Kiani AN, Eng J, Kamel IR, Zimmerman SL, Petri M (2015) Myocardial T2 mapping by cardiovascular magnetic resonance reveals subclinical myocardial inflammation in patients with systemic lupus erythematosus. Int J Cardiovasc Imaging 31:389–397

    CAS  PubMed  Google Scholar 

  57. Azarisman SM, Carbone A, Shirazi M, Bradley J, Teo KS, Worthley MI, Worthley SG (2016) Characterisation of myocardial injury via T1 mapping in early reperfused myocardial infarction and its relationship with global and regional diastolic dysfunction. Heart Lung Circ 25:1094–1106

    PubMed  Google Scholar 

  58. Chin CW, Everett RJ, Kwiecinski J, Vesey AT, Yeung E, Esson G, Jenkins W, Koo M, Mirsadraee S, White AC, Japp AG, Prasad SK, Semple S, Newby DE, Dweck MR (2016) myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging 10:1320–1333

    PubMed  Google Scholar 

  59. Claridge S, Mennuni S, Jackson T, Behar JM, Porter B, Sieniewicz B, Bostock J, O’Neill M, Murgatroyd F, Gill J, Carr-White G, Chiribiri A, Razavi R, Chen Z, Rinaldi CA (2017) Substrate-dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: the importance of T1 mapping in nonischemic patients. J Cardiovasc Electrophysiol 28:785–795

    PubMed  Google Scholar 

  60. Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA, Bonderman D, Mascherbauer J (2016) Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging 9:e005277

    PubMed  Google Scholar 

  61. Gallego-Delgado M, Gonzalez-Lopez E, Munoz-Beamud F, Buades J, Galan L, Munoz-Blanco JL, Sanchez-Gonzalez J, Ibanez B, Mirelis JG, Garcia-Pavia P (2016) Extracellular volume detects amyloidotic cardiomyopathy and correlates with neurological impairment in transthyretin-familial amyloidosis. Rev Esp Cardiol 69:923–930

    PubMed  Google Scholar 

  62. Gao X, Liu M, Qu A, Chen Z, Jia Y, Yang N, Feng X, Liu J, Xu Y, Yang X, Wang G (2016) Native magnetic resonance T1-Mapping identifies diffuse myocardial injury in hypothyroidism. PLoS ONE 11:e0151266

    PubMed  PubMed Central  Google Scholar 

  63. Gormeli CA, Ozdemir ZM, Kahraman AS, Yagmur J, Ozdemir R, Colak C (2017) The evaluation of non-ischemic dilated cardiomyopathy with T1 mapping and ECV methods using 3T cardiac MRI. Radiol Med (Torino) 122:106–112

    Google Scholar 

  64. Homsi R, Luetkens JA, Skowasch D, Pizarro C, Sprinkart AM, Gieseke J, Meyer Zur Heide Gen Meyer-Arend J, Schild HH, Naehle CP (2017) Left ventricular myocardial fibrosis, atrophy, and impaired contractility in patients with pulmonary arterial hypertension and a preserved left ventricular function: a cardiac magnetic resonance study. J Thorac Imaging 32:36–42

    PubMed  Google Scholar 

  65. Inui K, Tachi M, Saito T, Kubota Y, Murai K, Kato K, Takano H, Amano Y, Asai K, Shimizu W (2016) Superiority of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fibrosis in patients with non-ischemic cardiomyopathy. Magn Reson Imaging 34:1141–1145

    PubMed  Google Scholar 

  66. Luetkens JA, Schlesinger-Irsch U, Kuetting DL, Dabir D, Homsi R, Doerner J, Schmeel FC, Fimmers R, Sprinkart AM, Naehle CP, Schild HH, Thomas D (2017) Feature-tracking myocardial strain analysis in acute myocarditis: diagnostic value and association with myocardial oedema. Eur Radiol 27:4661–4671

    PubMed  Google Scholar 

  67. Mahmod M, Piechnik SK, Levelt E, Ferreira VM, Francis JM, Lewis A, Pal N, Dass S, Ashrafian H, Neubauer S, Karamitsos TD (2014) Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 16:92

    PubMed  PubMed Central  Google Scholar 

  68. Mazurkiewicz L, Petryka J, Spiewak M, Milosz-Wieczorek B, Werys K, Malek LA, Polanska-Skrzypczyk M, Ojrzynska N, Kubik A, Marczak M, Misko J, Grzybowski J (2017) Biventricular mechanics in prediction of severe myocardial fibrosis in patients with dilated cardiomyopathy: CMR study. Eur J Radiol 91:71–81

    PubMed  Google Scholar 

  69. Mordi IR, Singh S, Rudd A, Srinivasan J, Frenneaux M, Tzemos N, Dawson DK (2017) Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC Cardiovasc Imaging 11:577–585

    PubMed  Google Scholar 

  70. Nakamori S, Dohi K, Ishida M, Goto Y, Imanaka-Yoshida K, Omori T, Goto I, Kumagai N, Fujimoto N, Ichikawa Y, Kitagawa K, Yamada N, Sakuma H, Ito M (2017) Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging 11:48–59

    PubMed  Google Scholar 

  71. Rodrigues JC, Amadu AM, Ghosh Dastidar A, McIntyre B, Szantho GV, Lyen S, Godsave C, Ratcliffe LE, Burchell AE, Hart EC, Hamilton MC, Nightingale AK, Paton JF, Manghat NE, Bucciarelli-Ducci C (2017) ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 18:441–450

    PubMed  Google Scholar 

  72. Rutherford E, Talle MA, Mangion K, Bell E, Rauhalammi SM, Roditi G, McComb C, Radjenovic A, Welsh P, Woodward R, Struthers AD, Jardine AG, Patel RK, Berry C, Mark PB (2016) Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 90:845–852

    PubMed  PubMed Central  Google Scholar 

  73. Shang Y, Zhang X, Leng W, Chen L, Lei X, Zhang T, Greiser A, Liang Z, Wang J (2017) Assessment of diabetic cardiomyopathy by cardiovascular magnetic resonance T1 mapping: correlation with left-ventricular diastolic dysfunction and diabetic duration. J Diabetes Res 2017:9584278

    PubMed  PubMed Central  Google Scholar 

  74. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146

    PubMed  Google Scholar 

  75. McDiarmid AK, Broadbent DA, Higgins DM, Swoboda PP, Kidambi A, Ripley DP, Erhayiem B, Musa TA, Dobson LE, Greenwood JP, Plein S (2015) The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 tesla cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 5:503–510

    PubMed  PubMed Central  Google Scholar 

  76. Gottbrecht M, Kramer CM, Salerno M (2019) Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: a meta-analysis. Radiology 290:317–326

    PubMed  Google Scholar 

  77. Brant WE, Helms CA (2012) Fundamentals of diagnostic radiology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  78. Rodrigues JC, Amadu AM, Dastidar AG, Szantho GV, Lyen SM, Godsave C, Ratcliffe LE, Burchell AE, Hart EC, Hamilton MC, Nightingale AK, Paton JF, Manghat NE, Bucciarelli-Ducci C (2016) Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart 102:1671–1679

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Elizabeth Seymour, for her support in systematic review.

Disclosures

KN is supported by an award from the Select Foundation, which had no role for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Negishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, H.Q., Marwick, T.H. & Negishi, K. Pooled summary of native T1 value and extracellular volume with MOLLI variant sequences in normal subjects and patients with cardiovascular disease. Int J Cardiovasc Imaging 36, 325–336 (2020). https://doi.org/10.1007/s10554-019-01717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01717-3

Keywords

Navigation