Skip to main content
Log in

The value of a simplified approach to end-systolic volume measurement for assessment of left ventricular contractile reserve during stress-echocardiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The peak stress/rest ratio of left ventricular (LV) elastance, or LV force, is a load-independent index of left ventricular contractile reserve (LVCR) with stress echo (SE). To assess the accuracy of LVCR calculated during SE with approaches of different complexity. Two-hundred-forty patients were referred to SE for known or suspected coronary artery disease or heart failure and, of those, 200 patients, age 61 ± 15, 99 females, with interpretable volumetric SE were enrolled. All readers had passed the upstream quality control reading for regional wall motion abnormality (RWMA) and end-systolic volume (ESV) measurement. The employed stress was dipyridamole (0.84 mg, 6 min) in 86 (43%) and dobutamine (up to 40 mcg/kg/min) in 114 (57%) patients. All underwent SE with evaluation of RWMA and simultaneous LVCR assessment with stress/rest ratio of LV force (systolic blood pressure by cuff sphygmomanometer/ESV). ESV was calculated in each patient by two of three methods: biplane Simpson rule (S, in 100 patients), single plane area-length (AL, apical four-chamber area and length, in 100 patients), and Teichholz rule (T, from parasternal long axis and/or short axis view, in 200 patients). RMWA were observed in 54 patients. Success rate for ESV measurement was 76% (100/131) for S, 92% (100/109) for AL, and 100% (240/240) for T. There were 100 paired measurements (rest and stress) with S versus T, and 100 with AL versus T. The analysis time was the shortest for T (33 ± 8 s at rest, 34 ± 7 s at stress), intermediate for AL (70 ± 22 s at rest 67 ± 21 s at stress), and the longest for S (136 ± 24 at rest 129 ± 27 s at stress, p < 0.05 vs. T and AL). ESV absolute values were moderately correlated: T versus S (r rest = 0.746, p < 0.01, n = 100; r stress = 0.794, p < 0.01, n = 100); T vs. AL (r = 0.603 p < 0.01, n = 100, at rest and r = 0.820 p < 0.01 n = 100 at peak stress). LVCR values were tightly correlated independently of the method employed: T versus S (r = 0.899, p < 0.01, n = 100), and T versus AL (r = 0.845, p < 0.01, n = 100). LVCR can be accurately determined with all three methods used to extract the raw values of ESV necessary to generate the calculation of Force. Although S is known to be more precise in determining absolute ESV values, the relative (rest-stress) changes can be assessed, with comparable accuracy, with simpler and more feasible T and AL methods, characterized by higher success rate, shorter imaging and analysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AL:

Area-length method

CAD:

Coronary artery disease

EF:

Ejection fraction

ESV:

End-systolic volume

HF:

Heart failure

LV:

Left ventricle

LVCR:

Left ventricular contractile reserve

RWMA:

Regional wall motion abnormalities

S:

Simpson method

SE:

Stress echocardiography

T:

Teichholz method

TTE:

Transthoracic echocardiography

WMSI:

Wall motion score index

References

  1. Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041

    Article  PubMed  Google Scholar 

  2. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D (2008) Stress echocardiography expert consensus statement: european Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  3. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, Kreeger J, Mertens L, Pibarot P, Picano E, Ryan T, Tsutsui JM, Varga A (2016) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 17:1191–1229

    Article  Google Scholar 

  4. Ginzton LE, Laks MM, Brizendine M, Conant R, Mena I (1984) Noninvasive measurement of the rest and exercise peak systolic pressure/end-systolic volume ratio: a sensitive two-dimensional echocardiographic indicator of left ventricular function. J Am Coll Cardiol 4:509–516

    Article  CAS  PubMed  Google Scholar 

  5. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40:748–753

    Article  CAS  PubMed  Google Scholar 

  6. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E (2003) Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch Treppe? J Am Soc Echocardiogr 16:646–655

    Article  PubMed  Google Scholar 

  7. Cikes M, Solomon SD (2016) Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J 37:1642–1650

    Article  PubMed  Google Scholar 

  8. Bombardini T, Mulieri LA, Salvadori S, Costantino MF, Scali MC, Marzilli M, Picano E (2017) Pressure-Volume relationship in Stress echocardiography laboratory: does (left ventricular end-diastoli) size matter? Rev Esp Cardiol 70:96–104

    Article  PubMed  Google Scholar 

  9. Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E (2005) End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J 26:2404–2412

    Article  PubMed  Google Scholar 

  10. Cortigiani L, Bombardini T, Corbisiero A, Mazzoni A, Bovenzi F, Picano E (2009) The additive prognostic value of end-systolic pressure-volume relation in patients with diabetes mellitus having negative dobutamine stress echocardiography by wall motion criteria. Heart 95:1429–1435

    Article  CAS  PubMed  Google Scholar 

  11. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int 2013:235194

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cortigiani L, Huqi A, Ciampi Q, Bombardini T, Bovenzi F, Picano E (2018) Integration of Wall Motion, Coronary Flow Velocity, and Left Ventricular Contractile Reserve in a Single Test: prognostic Value of Vasodilator Stress Echocardiography in Patients with Diabetes. J Am Soc Echocardiogr 31:692–701

    Article  PubMed  Google Scholar 

  13. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39. e14

    Article  Google Scholar 

  14. Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR (1992) Comparison of Adenosine, Dipyridamole, and Dobutamine in Stress Echocardiography. Ann Intern Med 116:190–196

    Article  CAS  PubMed  Google Scholar 

  15. Wahr DW, Wang YS, Schiller NB (1983) Left ventricular volumes determined by two-dimensional echocardiography in a normal adult population. J Am Coll Cardiol 1:863–868

    Article  CAS  PubMed  Google Scholar 

  16. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37:7–11

    Article  CAS  PubMed  Google Scholar 

  17. Picano E, Ciampi Q, Citro R, D’Andrea A, Scali MC, Cortigiani L, Olivotto I, Mori F, Galderisi M, Costantino MF, Pratali L, Di Salvo G, Bossone E, Ferrara F, Gargani L, Rigo F, Gaibazzi N, Limongelli G, Pacileo G, Andreassi MG, Pinamonti B, Massa L, Torres MAR, Miglioranza MH, Daros CB, de Castro e Silva Pretto JL, Beleslin B, Djordjevic-Dikic A, Varga A, Palinkas A, Agoston G, Gregori D, Trambaiolo P, Severino S, Arystan A, Paterni M, Carpeggiani C, Colonna P (2017) Stress echo 2020: the international Stress Echo study in ischemic and non-ischemic heart disease. Cardiovasc Ultrasound. https://doi.org/10.1186/s12947-016-0092-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ciampi Q, Picano E, Paterni M, Borguezan Daros C, Simova I, de Castro e Silva Pretto JL, Scali MC, Gaibazzi N, Severino S, Djordjevic-Dikic A, Kasprzak J, Zagatina A, Varga A, Lowenstein J, Merlo PM, Amor M, Celeutkiene J, Perez J, Di Salvo G, Galderisi M, Mori F, Costantino FM, Massa L, Dekleva M, Quesada Chavez D, Trambaiolo P, Citro R, Colonna P, Rigo F, Torres ARM, Monte I, Stankovic I, Neskovic A, Cortigiani L, Re F, Dodi C, D’Andrea A, Villari B, Arystan A, De Nes M, Carpeggiani C, on behalf of Stress Echo 2020 study group of the Italian Society of Cardiovascular Echography (2017) Quality Control of Regional Wall Motion Analysis in Stress echo 2020. Int J Cardiol 249:479–485

    Article  PubMed  Google Scholar 

  19. Carpeggiani C, Ciampi Q, Paterni M, De Nes M, Zagatina A, Simova I, Djordievic-Dikic A, Citro R, Colonna P, Picano E (2019) Multi-step Web-based Training: the road to Stress echo 2020. Arg J Cardiol 86(6):404–409

    Google Scholar 

  20. Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences. Houghton Mifflin College Division, Boston, p 756

    Google Scholar 

  21. Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E (2005) Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Fail 7:173–181

    Article  PubMed  Google Scholar 

  22. Turakhia MP, McManus DD, Whooley MA, Schiller NB (2009) Increase in end-systolic volume after exercise independently predicts mortality in patients with coronary heart disease: data from the Heart and Soul Study. Eur Heart J 30:2478–2484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Picano E, Faletra F, Marini C, Paterni M, Danzi GB, Lombardi M, Campolo L, Gigli G, Landini L, Pezzano A, Distante A (1993) Increased echodensity of transiently asynergic myocardium in humans: a novel echocardiographic sign of myocardial ischemia. J Am Coll Cardiol 21:199–207

    Article  CAS  PubMed  Google Scholar 

  24. Kataoka A, Scherrer-Crosbie M, Senior R, Gosselin G, Phaneuf D, Guzman G, Perna G, Lara A, Kedev S, Mortara A, El-Hajjar M, Shaw LJ, Reynolds HR, Picard MH (2015) The value of core lab stress echocardiography interpretations: observations from the ISCHEMIA Trial. Cardiovasc Ultrasound 13(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thavendiranathan P, Popović ZB, Flamm SD, Dahiya A, Grimm RA, Marwick TH (2013) Improved interobserver variability and accuracy of echocardiographic visual left ventricular ejection fraction assessment through a self-directed learning program using cardiac magnetic resonance images. J Am Soc Echocardiogr 26:1267–1273

    Article  PubMed  Google Scholar 

  26. Schiller NB (2012) Gaining respect for echocardiographic volumetric quantitation: observations on a study of the baseline echocardiography data from the STICH echocardiography core laboratory. J Am Soc Echocardiogr 25:337–340

    Article  PubMed  Google Scholar 

  27. Picano E, Pellikka PA (2014) Stress echo applications beyond coronary artery disease. Eur Heart J 35:1033–1040

    Article  PubMed  Google Scholar 

  28. Mada RO, Lysyansky P, Daraban AM, Duchenne J, Voigt J-U (2015) How to define end-diastole and end-systole? JACC Cardiovasc Imaging 8:148–157

    Article  PubMed  Google Scholar 

  29. Grossgasteiger M, Hien MD, Graser B, Rauch H, Motsch J, Gondan M, Rosendal C (2014) Image quality influences the assessment of left ventricular function: an intraoperative comparison of five 2-dimensional echocardiographic methods with real-time 3-dimensional echocardiography as a reference. Ultrasound Med. 33(2):297–306. https://doi.org/10.7863/ultra.33.2.297

    Article  Google Scholar 

  30. Picano E, Ciampi Q, Wierzbowska-Drabik K, Urluescu ML, Morrone D, Carpeggiani C (2018) The new clinical standard of integrated quadruple stress echocardiography with ABCD protocol. Cardiov Ultrasound 16:22. https://doi.org/10.1186/s12947-018-0141-z

    Article  Google Scholar 

Download references

Funding

Ageing project of Italian national Research Council (GAE P001328).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Eugenio Picano.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M.A.R., Texeira, T.F., Camarozano, A.C. et al. The value of a simplified approach to end-systolic volume measurement for assessment of left ventricular contractile reserve during stress-echocardiography. Int J Cardiovasc Imaging 35, 1019–1026 (2019). https://doi.org/10.1007/s10554-019-01599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01599-5

Keywords

Navigation