Skip to main content
Log in

Insights into functional mitral regurgitation using the average pixel intensity method

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Previously we introduced and validated the average pixel intensity (API) method for grading mitral regurgitation (MR) in a heterogeneous MR population. We now investigated the feasibility and added value of the API method more specifically in patients with functional MR (FMR). We consecutively enrolled 283 patients with pure FMR. Transthoracic echocardiography was performed and MR was assessed using the API method and guideline-recommended parameters, including color Doppler, vena contracta width (VCW) and proximal isovelocity surface area (PISA)-based methods. The API method had an applicability of 98% in this FMR cohort, which was significantly higher than VCW (84%) and PISA-based methods (75%). Overall, the API method had significant correlations with direct parameters of FMR severity, ejection fraction, atrial and ventricular dimensions, pulmonary pressures and New York Heart Association class. Analysis of the API dynamics during MR revealed a typical pattern with early and late systolic peaks in API and a midsystolic nadir, which matched the temporal changes of the effective regurgitant orifice (ERO) during FMR. Based on ROC curves of established FMR severity cut-offs, an API value of 125 au was considered the optimal cut-off to determine severe MR. Interestingly, this API severity cut-off is similar to the API severity cut-off for MR in degenerative MR (DMR), despite different EROA/RV cut-offs in current ESC guidelines for FMR and DMR. The API method is an easy, fast and feasible parameter for grading FMR and may complement the multiparametric assessment of FMR in daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grayburn PA, Carabello B, Hung J et al (2014) Defining “severe” secondary mitral regurgitation. J Am Coll Cardiol 64:2792–2801

    Article  PubMed  Google Scholar 

  2. Sannino A, Smith RL, Schiattarella GG et al (2017) Survival and cardiovascular outcomes of patients with secondary mitral regurgitation: a systematic review and meta-analysis. JAMA Cardiol 2:1130–1139

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mowakeaa S, Dwivedi A, Grossman JR et al (2018) Prognosis of patients with secondary mitral regurgitation and reduced ejection fraction. Open Heart 5:e000745

    Article  PubMed  PubMed Central  Google Scholar 

  4. Michler RE, Smith PK, Parides MK et al (2016) Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med 374:1932–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu AH, Aaronson KD, Bolling SF et al (2005) Impact of mitral valve annuloplasty on mortality risk in patients with mitral regurgitation and left ventricular systolic dysfunction. J Am Coll Cardiol 45:381–387

    Article  PubMed  Google Scholar 

  6. Mihaljevic T, Lam B-K, Rajeswaran J et al (2007) Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J Am Coll Cardiol 49:2191–2201

    Article  PubMed  Google Scholar 

  7. Zoghbi WA, Adams D, Bonow RO et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation. J Am Soc Echocardiogr 30:303–371

    Article  PubMed  Google Scholar 

  8. Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791

    Article  PubMed  Google Scholar 

  9. Lancellotti P, Moura L, Pierard LA et al (2010) European Association of echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    Article  PubMed  Google Scholar 

  10. Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease. J Am Coll Cardiol 70:252–289

    Article  PubMed  Google Scholar 

  11. Acker MA, Parides MK, Perrault LP et al (2014) Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 370:23–32

    Article  CAS  PubMed  Google Scholar 

  12. Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764

    Article  CAS  PubMed  Google Scholar 

  13. El Haddad M, De Backer T, De Buyzere M et al (2017) Grading of mitral regurgitation based on intensity analysis of the continuous wave Doppler signal. Heart 103:190–197

    Article  PubMed  Google Scholar 

  14. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  15. Kamoen V, El Haddad M, De Buyzere M et al (2018) Grading of mitral regurgitation in mitral valve prolapse using the average pixel intensity method. Int J Cardiol 258:305–312

    Article  PubMed  Google Scholar 

  16. Grayburn PA (2011) The importance of regurgitant orifice shape in mitral regurgitation. JACC Cardiovasc Imaging 4:1097–1099

    Article  PubMed  Google Scholar 

  17. Fattouch K, Guccione F, Sampognaro R et al (2009) POINT: efficacy of adding mitral valve restrictive annuloplasty to coronary artery bypass grafting in patients with moderate ischemic mitral valve regurgitation: a randomized trial. J Thorac Cardiovasc Surg 138:278–285

    Article  PubMed  Google Scholar 

  18. Chan KMJ, Punjabi PP, Flather M et al (2012) Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation: final results of the randomized ischemic mitral evaluation (RIME) trial. Circulation 126:2502–2510

    Article  PubMed  Google Scholar 

  19. Grayburn PA, Weissman NJ, Zamorano JL (2012) Quantitation of mitral regurgitation. Circulation 126:2005–2017

    Article  PubMed  Google Scholar 

  20. Chiampan A, Nahum J, Leye M et al (2012) Determinants of regurgitant volume in mitral regurgitation: contrasting effect of similar effective regurgitant orifice area in functional and organic mitral regurgitation. Eur Hear J Cardiovasc Imaging 13:324–329

    Article  Google Scholar 

  21. Liang JJ, Silvestry FE (2016) Mechanistic insights into mitral regurgitation due to atrial fibrillation: “atrial functional mitral regurgitation”. Trends Cardiovasc Med 26:681–689

    Article  PubMed  Google Scholar 

  22. Hung J, Otsuji Y, Handschumacher MD et al (1999) Mechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation: physiologic insights from the proximal flow convergence technique. J Am Coll Cardiol 33:538–545

    Article  CAS  PubMed  Google Scholar 

  23. Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778

    Article  PubMed  Google Scholar 

  24. Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    Article  CAS  PubMed  Google Scholar 

  25. Topilsky Y, Michelena H, Bichara V et al (2012) Mitral valve prolapse with mid-late systolic mitral regurgitation: pitfalls of evaluation and clinical outcome compared with holosystolic regurgitation. Circulation 125:1643–1651

    Article  PubMed  Google Scholar 

  26. Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921

    Article  PubMed  Google Scholar 

  27. Choi J, Heo R, Hong G-R et al (2014) Differential effect of 3-dimensional color Doppler echocardiography for the quantification of mitral regurgitation according to the severity and characteristics. Circ Cardiovasc Imaging 7:535–544

    Article  PubMed  Google Scholar 

  28. Gaasch WH, Meyer TE (2017) Secondary mitral regurgitation (part 1): volumetric quantification and analysis. Heart heartjnl-2017-312001

  29. Smith PK, Puskas JD, Ascheim DD et al (2014) Surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med 371:2178–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kamoen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoen, V., El Haddad, M., De Backer, T. et al. Insights into functional mitral regurgitation using the average pixel intensity method. Int J Cardiovasc Imaging 35, 761–769 (2019). https://doi.org/10.1007/s10554-018-1509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1509-8

Keywords

Navigation