Skip to main content
Log in

Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The purpose of this work was to develop a framework for 3D fusion of CT coronary angiography (CTCA) and whole-heart dynamic 3D cardiac magnetic resonance perfusion (3D-CMR-Perf) image data—correlating coronary artery stenoses to stress-induced myocardial perfusion deficits for the assessment of coronary artery disease (CAD). Twenty-three patients who underwent CTCA and 3D-CMR-Perf for various indications were included retrospectively. For CTCA, image quality and coronary diameter stenoses > 50% were documented. For 3D-CMR-Perf, image quality and stress-induced perfusion deficits were noted. A software framework was developed to allow for 3D image fusion of both datasets. Computation steps included: (1) fully automated segmentation of coronary arteries and heart contours from CT; (2) manual segmentation of the left ventricle in 3D-CMR-Perf images; (3) semi-automatic co-registration of CT/CMR datasets; (4) projection of the 3D-CMR-Perf values on the CT left ventricle. 3D fusion analysis was compared to separate inspection of CTCA and 3D-CMR-Perf data. CT and CMR scans resulted in an image quality being rated as good to excellent (mean scores 3.5 ± 0.5 and 3.7 ± 0.4, respectively, scale 1–4). 3D-fusion was feasible in all 23 patients, and perfusion deficits could be correlated to culprit coronary lesions in all but one case (22/23 = 96%). Compared to separate analysis of CT and CMR data, coronary supply territories of 3D-CMR-Perf perfusion deficits were refined in two cases (2/23 = 9%), and the relevance of stenoses in CTCA was re-judged in four cases (4/23 = 17%). In conclusion, 3D fusion of CTCA/3D-CMR-Perf facilitates anatomic correlation of coronary lesions and stress-induced myocardial perfusion deficits thereby helping to refine diagnostic assessment of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Authors/Task Force Members, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619. doi:10.1093/eurheartj/ehu278

    Article  Google Scholar 

  2. Nakaura T, Utsunomiya D, Shiraishi S, Tomiguchi S, Honda T, Ogawa H, Awai K, Yamashita Y (2005) Three-dimensional cardiac image fusion using new CT angiography and SPECT methods. AJR Am J Roentgenol 185(6):1554–1557. doi:10.2214/AJR.04.1401

    Article  PubMed  Google Scholar 

  3. Gaemperli O, Schepis T, Kalff V, Namdar M, Valenta I, Stefani L, Desbiolles L, Leschka S, Husmann L, Alkadhi H, Kaufmann PA (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34(7):1097–1106. doi:10.1007/s00259-006-0342-9

    Article  PubMed  Google Scholar 

  4. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, Litmanovich D, Frenkel A, Aronson D, Engel A, Beyar R, Israel O (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49(10):1059–1067. doi:10.1016/j.jacc.2006.10.069

    Article  PubMed  Google Scholar 

  5. Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA, Luscher TF, von Schulthess GK, Kaufmann PA (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46(6):930–935

    PubMed  Google Scholar 

  6. Nishimura Y, Fukuchi K, Katafuchi T, Sagou M, Oka H, Ishida Y, Murase K (2004) Superimposed display of coronary artery on gated myocardial perfusion scintigraphy. J Nucl Med 45(9):1444–1449

    PubMed  Google Scholar 

  7. Schindler TH, Magosaki N, Jeserich M, Nitzsche E, Oser U, Abdollahnia T, Nageleisen M, Zehender M, Just H, Solzbach U (2000) 3D assessment of myocardial perfusion parameter combined with 3D reconstructed coronary artery tree from digital coronary angiograms. Int J Card Imaging 16(1):1–12

    Article  CAS  PubMed  Google Scholar 

  8. Schindler TH, Nitzsche EU, Magosaki N, Mix M, Facta AD, Prior JO, Solzbach U, Schelbert HR, Just H (2004) Myocardial viability in patients with ischemic cardiomyopathy-evaluation by 3-D integration of myocardial scintigraphic data—and coronary angiographic data. Mol Imaging Biol 6(3):160–171. doi:10.1016/j.mibio.2004.02.002

    Article  PubMed  Google Scholar 

  9. Schindler TH, Magosaki N, Jeserich M, Oser U, Krause T, Fischer R, Moser E, Nitzsche E, Zehender M, Just H, Solzbach U (1999) Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease. Int J Card Imaging 15(5):357–368 (discussion 369–370)

    Article  CAS  PubMed  Google Scholar 

  10. Gotschy A, Wissmann L, Goolaub DS, Niemann M, Hamada S, Kozerke S, Manka R (2016) First fusion and combined evaluation of 3D-CMR perfusion with 3D-MR coronary angiography. Int J Cardiol 202:62–63. doi:10.1016/j.ijcard.2015.08.165

    Article  PubMed  Google Scholar 

  11. Setser RM, O’Donnell TP, Smedira NG, Sabik JF, Halliburton SS, Stillman AE, White RD (2005) Coregistered MR imaging myocardial viability maps and multi-detector row CT coronary angiography displays for surgical revascularization planning: initial experience. Radiology 237(2):465–473. doi:10.1148/radiol.2372040236

    Article  PubMed  Google Scholar 

  12. White RD, Setser RM (2002) Integrated approach to evaluating coronary artery disease and ischemic heart disease. Am J Cardiol 90(10C):49L–55L

    Article  PubMed  Google Scholar 

  13. Bulluck H, White SK, Frohlich GM, Casson SG, O’Meara C, Newton A, Nicholas J, Weale P, Wan SM, Sirker A, Moon JC, Yellon DM, Groves A, Menezes L, Hausenloy DJ (2016) Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging. Circ Cardiovasc Imaging 9(3):e003900. doi:10.1161/CIRCIMAGING.115.003900

    Article  PubMed  PubMed Central  Google Scholar 

  14. Branch KR, Hamilton-Craig C (2017) The dye don’t lie but may not tell the truth: combining coronary computed tomography angiography with myocardial perfusion imaging. JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2017.06.009

    PubMed  Google Scholar 

  15. von Spiczak J, Manka R, Mannil M, Oebel S, Hamada S, Higashigaito K, Klotz E, Ruschitzka F, Alkadhi H (2017) 3D fusion of coronary CT angiography and CT myocardial perfusion imaging: Intuitive assessment of morphology and function. J Cardiovasc Comput Tomogr. doi:10.1016/j.jcct.2017.09.003

    Google Scholar 

  16. von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154(6):413–420. doi:10.7326/0003-4819-154-6-201103150-00007

    Article  Google Scholar 

  17. Takx RAP, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, Hoffmann U, Leiner T (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8(1):e002666. doi:10.1161/CIRCIMAGING.114.002666

    Article  PubMed  Google Scholar 

  18. Donati OF, Alkadhi H, Scheffel H, Kuehnel C, Hennemuth A, Wyss C, Azemaj N, Plass A, Kozerke S, Falk V, Leschka S, Stolzmann P (2011) 3D fusion of functional cardiac magnetic resonance imaging and computed tomography coronary angiography: accuracy and added clinical value. Invest Radiol 46:331–340

    PubMed  Google Scholar 

  19. Kirisli HA, Gupta V, Kirschbaum SW, Rossi A, Metz CT, Schaap M, van Geuns RJ, Mollet N, Lelieveldt BP, Reiber JH, van Walsum T, Niessen WJ (2012) Comprehensive visualization of multimodal cardiac imaging data for assessment of coronary artery disease: first clinical results of the SMARTVis tool. Int J Comput Assist Radiol Surg 7(4):557–571. doi:10.1007/s11548-011-0657-2

    Article  PubMed  Google Scholar 

  20. Vitanis V, Manka R, Giese D, Pedersen H, Plein S, Boesiger P, Kozerke S (2011) High resolution three-dimensional cardiac perfusion imaging using compartment-based k-t principal component analysis. Magn Reson Med 65(2):575–587. doi:10.1002/mrm.22620

    Article  PubMed  Google Scholar 

  21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  22. Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54(5):1295–1299. doi:10.1002/mrm.20666

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190. doi:10.1109/TMI.2013.2265603

    Article  PubMed  PubMed Central  Google Scholar 

  24. Veninga T, Huisman H, van der Maazen RW, Huizenga H (2004) Clinical validation of the normalized mutual information method for registration of CT and MR images in radiotherapy of brain tumors. J Appl Clin Med Phys 5(3):66–79

    Article  PubMed  Google Scholar 

  25. Wang X, Li L, Hu C, Qiu J, Xu Z, Feng Y (2009) A comparative study of three CT and MRI registration algorithms in nasopharyngeal carcinoma. J Appl Clin Med Phys 10(2):2906

    Article  PubMed  Google Scholar 

  26. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6(2):163–168

    Article  Google Scholar 

  27. van Werkhoven JM, Heijenbrok MW, Schuijf JD, Jukema JW, van der Wall EE, Schreur JHM, Bax JJ (2010) Combined non-invasive anatomical and functional assessment with MSCT and MRI for the detection of significant coronary artery disease in patients with an intermediate pre-test likelihood. Heart 96:425–431. doi:10.1136/hrt.2009.179531

    Article  PubMed  Google Scholar 

  28. Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, Knez A, Pfluger T, Reiser M, Hahn K, Tiling R (2005) Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 46(8):1294–1300

    PubMed  Google Scholar 

  29. Rizvi A, Han D, Danad I, Hartaigh BÓ, Lee JH, Gransar H, Stuijfzand WJ, Roudsari HM, Park MW, Szymonifka J, Chang H, Jones EC, Knaapen P, Lin FY, Min JK, Peña JM (2017) Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with standalone coronary computed tomography angiography: a meta-analysis. JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2017.05.020

    PubMed  Google Scholar 

  30. Ortiz-Perez JT, Rodriguez J, Meyers SN, Lee DC, Davidson C, Wu E (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC-Cardiovasc Imaging 1(3):282–293. doi:10.1016/j.jcmg.2008.01.014

    Article  PubMed  Google Scholar 

  31. Bittencourt MS, Hulten EA, Murthy VL, Cheezum M, Rochitte CE, Di Carli MF, Blankstein R (2016) Clinical outcomes after evaluation of stable chest pain by coronary computed tomographic angiography versus usual care: a meta-analysis. Circ Cardiovasc Imaging 9(4):e004419. doi:10.1161/CIRCIMAGING.115.004419

    Article  PubMed  Google Scholar 

  32. Lee NJ, Litt H (2016) Cardiac CT angiography for evaluation of acute chest pain. Int J Cardiovasc Imaging 32(1):101–112. doi:10.1007/s10554-015-0763-2

    Article  PubMed  Google Scholar 

  33. Park CH, Lee J, Oh C, Han KH, Kim TH (2015) The feasibility of sub-millisievert coronary CT angiography with low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Int J Cardiovasc Imaging 31(Suppl 2):197–203. doi:10.1007/s10554-015-0795-7

    Article  PubMed  Google Scholar 

  34. Gargiulo P, Dellegrottaglie S, Bruzzese D, Savarese G, Scala O, Ruggiero D, D’Amore C, Paolillo S, Agostoni P, Bossone E, Soricelli A, Cuocolo A, Trimarco B, Perrone Filardi P (2013) The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circ Cardiovasc Imaging 6(4):574–582. doi:10.1161/CIRCIMAGING.113.000035

    Article  PubMed  Google Scholar 

  35. Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg B, Boesiger P, Fleck E, Paetsch I (2011) Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 57(4):437–444. doi:10.1016/j.jacc.2010.05.067

    Article  PubMed  Google Scholar 

  36. Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, Reith S, Schnackenburg B, Gaemperli O, Wissmann L, Wyss CA, Kaufmann PA, Corti R, Boesiger P, Marx N, Luscher TF, Jahnke C (2012) Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J 33(16):2016–2024. doi:10.1093/eurheartj/ehs170

    Article  PubMed  Google Scholar 

  37. Manka R, Wissmann L, Gebker R, Jogiya R, Motwani M, Frick M, Reinartz S, Schnackenburg B, Niemann M, Gotschy A, Kuhl C, Nagel E, Fleck E, Marx N, Luescher TF, Plein S, Kozerke S (2015) Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. Circ Cardiovasc Imaging 8(5):e003061. doi:10.1161/CIRCIMAGING.114.003061

    Article  PubMed  Google Scholar 

  38. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  PubMed  Google Scholar 

  39. Hussain ST, Paul M, Plein S, McCann GP, Shah AM, Marber MS, Chiribiri A, Morton G, Redwood S, MacCarthy P (2012) Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. J Cardiovasc Magn Reson 14(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  40. MR-Inform Study Presented Society for Cardiovascular Magnetic Resonance (2017) http://scmr.org/page/MRInformStudy/MR-Inform-Study-Presented.htm. Accessed 12 Oct 2017

  41. Moschetti K, Muzzarelli S, Pinget C, Wagner A, Pilz G, Wasserfallen J-B, Schulz-Menger J, Nothnagel D, Dill T, Frank H (2012) Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European cardiovascular magnetic resonance registry data to the German, United Kingdom, Swiss, and United States health care systems. J Cardiovasc Magn Reson 14(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845. doi:10.1016/j.media.2009.07.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen von Spiczak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Spiczak, J., Manka, R., Gotschy, A. et al. Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging. Int J Cardiovasc Imaging 34, 649–660 (2018). https://doi.org/10.1007/s10554-017-1260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1260-6

Keywords

Navigation