Skip to main content
Log in

Comprehensive 4-stage categorization of bicuspid aortic valve leaflet morphology by cardiac MRI in 386 patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAV:

Bicuspid aortic valve

MRI:

Magnetic resonance imaging

PC:

Phase contrast

bSSFP:

Balanced steady-state free precession

GRAPPA:

Generalized autocalibrating partially parallel acquisition

References

  1. Gray GW, Salisbury DA, Gulino AM (1995) Echocardiographic and color flow Doppler findings in military pilot applicants. Aviat Space Environ Med 66(1):32–34

    CAS  PubMed  Google Scholar 

  2. Ward C (2000) Clinical significance of the bicuspid aortic valve. Heart 83(1):81–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sievers H-H, Schmidtke C (2007) A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 133(5):1226–1233. doi:10.1016/j.jtcvs.2007.01.039

    Article  PubMed  Google Scholar 

  4. Kang J-W, Song HG, Yang DH et al (2013) Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging 6(2):150–161. doi:10.1016/j.jcmg.2012.11.007

    Article  PubMed  Google Scholar 

  5. Verma S, Siu SC (2014) Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 370(20):1920–1929. doi:10.1056/NEJMra1207059

    Article  CAS  PubMed  Google Scholar 

  6. Sievers H-H, Stierle U, Hachmann RMS, Charitos EI (2015) New insights in the association between bicuspid aortic valve phenotype, aortic configuration and valve haemodynamics. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezv087

    Google Scholar 

  7. Michelena HI, Khanna AD, Mahoney D et al (2011) Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306(10):1104–1112. doi:10.1001/jama.2011.1286

    Article  CAS  PubMed  Google Scholar 

  8. Schaefer BM, Lewin MB, Stout KK et al (2008) The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94(12):1634–1638. doi:10.1136/hrt.2007.132092

    Article  CAS  PubMed  Google Scholar 

  9. Buchner S, Hülsmann M, Poschenrieder F et al (2010) Variable phenotypes of bicuspid aortic valve disease: classification by cardiovascular magnetic resonance. Heart 96(15):1233–1240. doi:10.1136/hrt.2009.186254

    Article  PubMed  Google Scholar 

  10. Jermihov PN, Jia L, Sacks MS, Gorman RC, Gorman JH, Chandran KB (2011) Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol 2(1):48–56. doi:10.1007/s13239-011-0035-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garcia J, Barker AJ, van Ooij P, et al (2014) Assessment of altered three-dimensional blood characteristics in aortic disease by velocity distribution analysis. Magn Reson Med. doi:10.1002/mrm.25466.

    PubMed Central  Google Scholar 

  12. Fernandes S, Khairy P, Graham DA et al (2012) Bicuspid aortic valve and associated aortic dilation in the young. Heart 98(13):1014–1019. doi:10.1136/heartjnl-2012-301773

    Article  PubMed  Google Scholar 

  13. Malaisrie SC, Carr J, Mikati I et al (2012) Cardiac magnetic resonance imaging is more diagnostic than 2-dimensional echocardiography in determining the presence of bicuspid aortic valve. J Thorac Cardiovasc Surg 144(2):370–376. doi:10.1016/j.jtcvs.2011.09.068

    Article  PubMed  Google Scholar 

  14. Aicher D, Kunihara T, Abou Issa O, Brittner B, Gräber S, Schäfers H-J (2011) Valve configuration determines long-term results after repair of the bicuspid aortic valve. Circulation 123(2):178–185. doi:10.1161/CIRCULATIONAHA.109.934679

    Article  PubMed  Google Scholar 

  15. Barker AJ, Markl M, Bürk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466. doi:10.1161/CIRCIMAGING.112.973370

    Article  PubMed  Google Scholar 

  16. Sievers H-H, Stierle U, Mohamed SA et al (2014) Toward individualized management of the ascending aorta in bicuspid aortic valve surgery: the role of valve phenotype in 1362 patients. J Thorac Cardiovasc Surg. doi:10.1016/j.jtcvs.2014.04.007

    Google Scholar 

  17. Detaint D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME (2014) Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart 100(2):126–134. doi:10.1136/heartjnl-2013-304920

    Article  PubMed  Google Scholar 

  18. Corte Della A, Bancone C, Dialetto G, et al (2014) Towards an individualized approach to bicuspid aortopathy: different valve types have unique determinants of aortic dilatation. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezt601.

    Google Scholar 

  19. Mahadevia R, Barker AJ, Schnell S et al (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682. doi:10.1161/CIRCULATIONAHA.113.003026

    Article  CAS  PubMed  Google Scholar 

  20. Loscalzo ML, Goh DLM, Loeys B, Kent KC, Spevak PJ, Dietz HC (2007) Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A 143(17):1960–1967. doi:10.1002/ajmg.a.31872

    Article  Google Scholar 

  21. Robledo-Carmona J, Rodríguez-Bailón I, Carrasco-Chinchilla F et al (2013) Hereditary patterns of bicuspid aortic valve in a hundred families. Int J Cardiol 168(4):3443–3449. doi:10.1016/j.ijcard.2013.04.180

    Article  PubMed  Google Scholar 

  22. Sundt TM (2014) Aortic replacement in the setting of bicuspid aortic valve: how big? How much? J Thorac Cardiovasc Surg. doi:10.1016/j.jtcvs.2014.07.069

    PubMed Central  Google Scholar 

  23. Corte Della A, Body SC, Booher AM, et al (2014) Surgical treatment of bicuspid aortic valve disease: knowledge gaps and research perspectives. J Thorac Cardiovasc Surg 147(6):1749-57–1757.e1. doi:10.1016/j.jtcvs.2014.01.021

    Article  Google Scholar 

  24. van Ooij P, Potters WV, Collins J et al (2014) Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy. Ann Biomed Eng. doi:10.1007/s10439-014-1092-7

    PubMed  PubMed Central  Google Scholar 

  25. Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, Mewhort HE, Svystonyuk DA, Kang S, Verma S, Collins J, Carr J, Bonow RO, Markl M, Thomas JD, McCarthy PM, Fedak PW (2015) Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 66:892–900

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health under Award Number K25HL119608.

Funding

NIH NHLBI grants R01HL115828 and NIH K25HL119608. Additional support by the Martha and Richard Melman Family Bicuspid Bicuspid Aortic Valve Program at Northwestern’s Bluhm Cardiovascular Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Barker.

Ethics declarations

Conflict of interest

There is no conflict of interest, financial or otherwise, for any of the authors of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, I.G., Collins, J., Powell, A. et al. Comprehensive 4-stage categorization of bicuspid aortic valve leaflet morphology by cardiac MRI in 386 patients. Int J Cardiovasc Imaging 33, 1213–1221 (2017). https://doi.org/10.1007/s10554-017-1107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1107-1

Keywords

Navigation