Skip to main content

Advertisement

Log in

Lipid-lowering therapy stabilizes the complexity of non-culprit plaques in human coronary artery: a quantitative assessment using OCT bright spot algorithm

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To quantitatively evaluate the change of plaque complexity with cholesterol lowering therapy. A total of 44 non-culprit plaques from 30 patients who had serial image acquisition at baseline, 6-months, and 12-months by both optical coherence tomography (OCT) and intravascular ultrasound (IVUS) were included. Patients were treated with atorvastatin 60 mg (AT60, n = 16) or 20 mg (AT20, n = 14). We applied an OCT bright spot algorithm, which identifies a variety of plaque components including macrophages. The density of bright spot was measured within the superficial 250 µm of the vessel wall. Significant reduction of bright spot density was observed from baseline to 12-months [−0.49% (−0.95, −0.20), p < 0.001], particularly during the second 6 months [first 6 months: −0.01% (−0.57, 0.60), p = 0.939; second 6 months: −0.49% (−0.98, 0.14), p < 0.001]. Although there was no significant difference at 12 months in the reduction of bright spot density between plaques with acute coronary syndrome (ACS, n = 33) and those with stable angina (n = 11) [−0.49% (−0.93, −0.19) vs. −0.39% (−1.01, −0.21), p = 0.748], a significant reduction of bright spot density during the first 6 months was observed only in plaques with ACS. There was no significant difference in the change of bright spot density between the AT60 group (n = 22) and AT20 group (n = 22) [−0.61% (−0.93, −0.34) vs. −0.41% (−0.98, −0.19), p = 0.483]. Coronary plaque complexity evaluated by a quantitative OCT algorithm significantly decreased with 12 month atorvastatin therapy irrespective of the dose and initial clinical presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events trial investigators. N Engl J Med 335:1001–1009

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR, Leslie S, T. Stern I (2001) Myocardial ischemia reduction with aggressive cholesterol lowering study. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285:1711–1718

    Article  CAS  PubMed  Google Scholar 

  3. Okazaki S, Yokoyama T, Miyauchi K, Shimada K, Kurata T, Sato H, Daida H (2004) Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation 110:1061–1068

    Article  CAS  PubMed  Google Scholar 

  4. Tani S, Watanabe I, Anazawa T, Kawamata H, Tachibana E, Furukawa K, Sato Y, Nagao K, Kanmatsuse K, Kushiro T, Surugadai Atherosclerosis Regression I (2005) Effect of pravastatin on malondialdehyde-modified low-density lipoprotein levels and coronary plaque regression as determined by three-dimensional intravascular ultrasound. Am J Cardiol 96:1089–1094

    Article  CAS  PubMed  Google Scholar 

  5. Takarada S, Imanishi T, Kubo T, Tanimoto T, Kitabata H, Nakamura N, Tanaka A, Mizukoshi M, Akasaka T (2009) Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis 202:491–497

    Article  CAS  PubMed  Google Scholar 

  6. Takarada S, Imanishi T, Ishibashi K, Tanimoto T, Komukai K, Ino Y, Kitabata H, Kubo T, Tanaka A, Kimura K, Mizukoshi M, Akasaka T (2010) The effect of lipid and inflammatory profiles on the morphological changes of lipid-rich plaques in patients with non-ST-segment elevated acute coronary syndrome: follow-up study by optical coherence tomography and intravascular ultrasound. JACC Cardiovasc Interv 3:766–772

    Article  PubMed  Google Scholar 

  7. Komukai K, Kubo T, Kitabata H, Matsuo Y, Ozaki Y, Takarada S, Okumoto Y, Shiono Y, Orii M, Shimamura K, Ueno S, Yamano T, Tanimoto T, Ino Y, Yamaguchi T, Kumiko H, Tanaka A, Imanishi T, Akagi H, Akasaka T (2014) Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol 64:2207–2217

    Article  CAS  PubMed  Google Scholar 

  8. Phipps JE, Vela D, Hoyt T, Halaney DL, Mancuso JJ, Buja LM, Asmis R, Milner TE, Feldman MD (2015) Macrophages and intravascular OCT bright spots: a quantitative study. JACC Cardiovasc Imaging 8:63–72

    Article  PubMed  Google Scholar 

  9. Minami Y, Phipps JE, Hoyt T, Milner TE, Ong DS, Soeda T, Vergallo R, Feldman MD, Jang IK (2015) Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study. Int J Cardiovasc Imaging 31:1479–1487

    Article  PubMed  Google Scholar 

  10. Hou J, Lee S, Xing L, Jia H, Vergallo R, Soeda T, Minami Y, Hu S, Yang S, Zhang S, Lee H, Yu B, Jang IK (2015) Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am J Cardiol. doi:10.1016/j.amjcard.2015.11.062

    Google Scholar 

  11. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  12. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, G. Weisz T (2012) International Working Group for Intravascular Optical Coherence. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072

    Article  PubMed  Google Scholar 

  13. Di Vito L, Yoon JH, Kato K, Yonetsu T, Vergallo R, Costa M, Bezerra HG, Arbustini E, Narula J, Crea F, Prati F, Jang IK, Group C (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185

    Article  PubMed  Google Scholar 

  14. Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H, Somekawa S, Takeda Y, Kawata H, Horii M, Saito Y (2012) Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 33:78–85

    Article  PubMed  Google Scholar 

  15. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, Tearney GJ (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17:1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  17. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, Kato K, Yonetsu T, Vergallo R, Hu S, Tian J, Lee H, Park SJ, Jang YS, Raffel OC, Mizuno K, Uemura S, Itoh T, Kakuta T, Choi SY, Dauerman HL, Prasad A, Toma C, McNulty I, Zhang S, Yu B, Fuster V, Narula J, Virmani R, Jang IK (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758

    Article  PubMed  Google Scholar 

  18. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, Koura K, Hishikari K, Iesaka Y, Fujiwara H, Isobe M (2011) In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J 32:1251–1259

    Article  PubMed  Google Scholar 

  19. Sakai M, Kobori S, Matsumura T, Biwa T, Sato Y, Takemura T, Hakamata H, Horiuchi S, Shichiri M (1997) HMG-CoA reductase inhibitors suppress macrophage growth induced by oxidized low density lipoprotein. Atherosclerosis 133:51–59

    Article  CAS  PubMed  Google Scholar 

  20. Senokuchi T, Matsumura T, Sakai M, Yano M, Taguchi T, Matsuo T, Sonoda K, Kukidome D, Imoto K, Nishikawa T, Kim-Mitsuyama S, Takuwa Y, Araki E (2005) Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J Biol Chem 280:6627–6633

    Article  CAS  PubMed  Google Scholar 

  21. Puato M, Faggin E, Rattazzi M, Zambon A, Cipollone F, Grego F, Ganassin L, Plebani M, Mezzetti A, Pauletto P (2010) Atorvastatin reduces macrophage accumulation in atherosclerotic plaques: a comparison of a nonstatin-based regimen in patients undergoing carotid endarterectomy. Stroke 41:1163–1168

    Article  CAS  PubMed  Google Scholar 

  22. Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, U.K.-I. JM, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zalewski A, Gillard JH (2009) The ATHEROMA (atorvastatin therapy: effects on reduction of macrophage activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050

    Article  CAS  PubMed  Google Scholar 

  23. Anand DV, Lim E, Darko D, Bassett P, Hopkins D, Lipkin D, Corder R, Lahiri A (2007) Determinants of progression of coronary artery calcification in type 2 diabetes role of glycemic control and inflammatory/vascular calcification markers. J Am Coll Cardiol 50:2218–2225

    Article  CAS  PubMed  Google Scholar 

  24. Saremi A, Bahn G, Reaven PD, Investigators V (2012) Progression of vascular calcification is increased with statin use in the veterans affairs diabetes trial (VADT). Diabetes Care 35:2390–2392

    Article  PubMed  Google Scholar 

  25. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, Tuzcu EM, Nissen SE (2015) Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol 65:1273–1282

    Article  CAS  PubMed  Google Scholar 

  26. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM, Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the investigators, all supporting staff, and all the institutions of MGH OCT Registry for their contributions. The authors also thank Austin McElroy for his contribution to the development of the bright spot algorithm.

Funding

This study is supported by Clayton Foundation in Houston, Texas, Veterans Administration Merit Grant I01 BX000397, and American Heart Association Grant 13POST17080074. Ik-Kyung Jang received a research grant and honorarium from St. Jude Medical. IK Jang’s research was supported by Mr. and Mrs. Michael and Kathryn Park and Mrs. and Mr. Gill and Allan Gray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Kyung Jang.

Ethics declarations

Conflict of interest

None.

Supplemental material for online only publication

Supplemental methods.

Ethical statement

The protocol for the registry was approved by each institution’s ethics committee, and all patients provided written informed consent. This study was performed in accordance with the Declaration of Helsinki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 KB)

Supplementary material 2 (DOC 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, Y., Hoyt, T., Phipps, J.E. et al. Lipid-lowering therapy stabilizes the complexity of non-culprit plaques in human coronary artery: a quantitative assessment using OCT bright spot algorithm. Int J Cardiovasc Imaging 33, 453–461 (2017). https://doi.org/10.1007/s10554-016-1037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-1037-3

Keywords

Navigation