Skip to main content
Log in

Coronary computed tomography angiography investigation of the association between left main coronary artery bifurcation angle and risk factors of coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To explore the association between the left main coronary artery bifurcation angle and common atherosclerotic risk factors with regard to the development of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA). A retrospective review of 196 CCTA cases (129 males, 67 females, mean age 58 ± 10.5 years) was conducted. The bifurcation angle between the left anterior descending (LAD) and left circumflex (LCx) was measured on two-dimensional (2D) and three-dimensional (3D) reconstructed images and the type of plaque and degree of lumen stenosis was assessed to determine the disease severity. An association between bifurcation angle and patient risk factors [gender, body mass index (BMI), hypertension, cholesterol, diabetes, smoking and family history] of CAD was also assessed to demonstrate the relationship between these variables. The mean bifurcation angle between the LAD and LCx was 79.40° ± 22.97°, ranging from 35.5° to 178°. Gender and BMI were found to have significant associations with bifurcation angle. Males were at 2.07-fold greater risk of having a >80° bifurcation angle and developing CAD than females (P = 0.003), and patients with high BMI (>25 kg/m2) were 2.54-fold more likely to have a >80° bifurcation angle than patients with a normal BMI (P = 0.001) and thus were at greater risk of developing CAD. There is a direct relationship between the left main coronary artery bifurcation angle and patient gender and BMI. Measurement of the bifurcation angle should be incorporated into clinical practice to identify patients at high risk of developing CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun Z, Wan YL, Hsieh IC, Liu YC, Wen MS (2013) Coronary CT angiography in the diagnosis of coronary artery disease. Curr Med Imaging Rev 9:184–193

    Article  Google Scholar 

  2. Miszalski-Jamka T, Klimeczek P, Banys R, Krupinski M, Nycz K, Bury K, Lada M, Pelberg R, Kereiakes D, Mazur W (2012) The composition and extent of coronary artery plaque detected by multislice computed tomographic angiography provides incremental prognostic value in patients with suspected coronary artery disease. Int J Cardiovasc Imaging 28(3):621–631

    Article  PubMed  Google Scholar 

  3. Cheng VY, Nakazato R, Dey D, Gurudevan S, Tabak J, Budoff MJ, Karlsberg RP, Min J, Berman DS (2009) Reproducibility of coronary artery plaque volume and composition quantification by 64-detector row coronary computed tomographic angiography: an intraobserver, interobserver, and interscan variability study. J Cardiovasc Comput Tomogr 3(5):312–320

    Article  PubMed  Google Scholar 

  4. Chaichana T, Sun Z, Jewkes J (2011) Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech 44(10):1869–1878

    Article  PubMed  Google Scholar 

  5. Enrico B, Suranyi P, Thilo C, Bonomo L, Costello P, Schoepf UJ (2009) Coronary artery plaque formation at coronary CT angiography: morphological analysis and relationship to hemodynamics. Eur Radiol 19(4):837–844

    Article  PubMed  Google Scholar 

  6. Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96(2):234–243

    Article  CAS  PubMed  Google Scholar 

  7. Dong J, Sun Z, Inthavong K, Tu J (2015) Fluid-structure interaction analysis of the left coronary artery with variable angulation. Comput Methods Biomech Biomed Eng 18(14):1500–1508

    Article  Google Scholar 

  8. Markl M, Wegent F, Zech T, Bauer S, Strecker C, Schumacher M, Weiller C, Hennig J, Harloff A (2010) In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circ Cardiovasc Imaging 3(6):647–655

    Article  PubMed  Google Scholar 

  9. Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, LaMuraglia GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann Biomed Eng 32(7):932–946

    Article  CAS  PubMed  Google Scholar 

  10. Kimura BJ, Russo RJ, Bhargava V, McDaniel MB, Peterson KL, DeMaria AN (1996) Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. J Am Coll Cardiol 27(4):825–831

    Article  CAS  PubMed  Google Scholar 

  11. Chaichana T, Sun Z, Jewkes J (2012) Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images. Australas Phys Eng Sci Med 35(2):231–236

    Article  PubMed  Google Scholar 

  12. Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of various types of stenosis in the left coronary artery bifurcation: a patient-specific analysis. Phys Med 29(5):447–452

    Article  PubMed  Google Scholar 

  13. Rodriguez-Granillo GA, Garcia-Garcia HM, Wentzel J, Valgimigli M, Tsuchida K, van der Giessen W, de Jaegere P, Regar E, de Feyter PJ, Serruys PW (2006) Plaque composition and its relationship with acknowledged shear stress patterns in coronary arteries. J Am Coll Cardiol 47(4):884–885

    Article  PubMed  Google Scholar 

  14. Papadopoulou SL, Brugaletta S, Garcia-Garcia HM, Rossi A, Girasis C, Dharampal AS, Neefjes LA, Ligthart J, Nieman K, Krestin GP, Serruys PW, de Feyter PJ (2012) Assessment of atherosclerotic plaques at coronary bifurcations with multidetector computed tomography angiography and intravascular ultrasound-virtual histology. Eur Heart J Cardiovasc Imaging 13(8):635–642

    Article  PubMed  Google Scholar 

  15. Reig J, Petit M (2004) Main trunk of the left coronary artery: anatomic study of the parameters of clinical interest. Clin Anat 17(1):6–13

    Article  CAS  PubMed  Google Scholar 

  16. Pflederer T, Ludwig J, Ropers D, Daniel WG, Achenbach S (2006) Measurement of coronary artery bifurcation angles by multidetector computed tomography. Invest Radiol 41(11):793–798

    Article  PubMed  Google Scholar 

  17. Sun Z, Cao Y (2011) Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease. Eur J Radiol 79(2):e90–e95

    Article  PubMed  Google Scholar 

  18. Rodriguez-Granillo GA, Rosales MA, Degrossi E, Durbano I, Rodriguez AE (2007) Multislice CT coronary angiography for the detection of burden, morphology and distribution of atherosclerotic plaques in the left main bifurcation. Int J Cardiovasc Imaging 23(3):389–392

    Article  PubMed  Google Scholar 

  19. Cademartiri F, La Grutta L, Malago R, Alberghina F, Palumbo A, Belgrano M, Maffei E, Aldrovandi A, Pugliese F, Runza G, Weustink A, Bob Meeijboom W, Mollet NR, Midiri M (2009) Assessment of left main coronary artery atherosclerotic burden using 64-slice CT coronary angiography: correlation between dimensions and presence of plaques. Radiol Med 114(3):358–369

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47(8):1655–1662

    Article  PubMed  Google Scholar 

  21. Nichols M, Peterson K, Alston L, Allender S (2014) Australian heart disease statistics 2014. http://www.heartfoundation.org.au/SiteCollectionDocuments/HeartStats_2014_web.pdf (Accessed on October 30th, 2015)

  22. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322

    Article  PubMed  Google Scholar 

  23. Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan KM, Chow B, Cury R, Delago A, Dunning A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann P, Kim YJ, Leipsic J, Lin FY, Maffei E, Raff G, Shaw LJ, Villines TC, Min JK (2013) Body mass index and the prevalence, severity, and risk of coronary artery disease: an international multicentre study of 13,874 patients. Eur Heart J Cardiovasc Imaging 14(5):456–463

    Article  PubMed  Google Scholar 

  24. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW, PROSPECT Investigators (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235

    Article  CAS  PubMed  Google Scholar 

  25. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57

    Article  PubMed  Google Scholar 

  26. von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, Haude M, Wieneke H, Ge J, Erbel R (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol 37(7):1864–1870

    Article  Google Scholar 

  27. Van Mieghem CA, Thury A, Meijboom WB, Cademartiri F, Mollet NR, Weustink AC, Sianos G, de Jaegere PP, Serruys PW, de Feyter P (2007) Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. Eur Heart J 28(16):1968–1976

    Article  PubMed  Google Scholar 

  28. Kawasaki T, Koga H, Serikawa T, Orita Y, Ikeda S, Mito T, Gotou Y, Shintani Y, Tanaka A, Tanaka H, Fukuyama T, Koga N (2009) The bifurcation study using 64 multislice computed tomography. Catheter Cardiovasc Interv 73(5):653–658

    Article  PubMed  Google Scholar 

  29. Sun Z, Xu L (2014) Computational fluid dynamics in coronary artery disease. Comput Med Imaging Graph 38(8):651–663

    Article  PubMed  Google Scholar 

  30. Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1):18–28

    Article  PubMed  Google Scholar 

  31. Saremi F, Achenbach S (2015) Coronary plaque characterization using CT. AJR Am J Roentgenol 204(3):W249–W260

    Article  PubMed  Google Scholar 

  32. Szilveszter B, Celeng C, Maurovich-Horvat P (2016) Plaque assessment by coronary CT. Int J Cardiovasc Imaging 32(1):161–172

    Article  PubMed  Google Scholar 

  33. Zhang D, Dou K (2015) Coronary bifurcation intervention: what role do bifurcation angles play? J Interv Cardiol 28(3):236–248

    Article  PubMed  Google Scholar 

  34. Sun Z, Xu L, Fan Z (2016) Coronary CT angiography in calcified coronary plaques: Comparison of diagnostic accuracy between bifurcation angle measurement and coronary lumen assessment for diagnosing significant coronary stenosis. Int J Cardiol 203:78–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Gil Stevenson for his assistance with statistical analysis. Many thanks go to the Chief Operation Officer at SKG radiology for kindly accepting our data approval and Steven Vidovich, a CT specialist at SKG radiology, who provided appropriate training on the use of Tera-Recon 8.0 for image post-processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Sun.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temov, K., Sun, Z. Coronary computed tomography angiography investigation of the association between left main coronary artery bifurcation angle and risk factors of coronary artery disease. Int J Cardiovasc Imaging 32 (Suppl 1), 129–137 (2016). https://doi.org/10.1007/s10554-016-0884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0884-2

Keywords

Navigation