Skip to main content
Log in

Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Methods to index left ventricular (LV) mass, measured by cardiovascular magnetic resonance (CMR), for body size have not been investigated. The purposes of this study were to develop allometric indices for LV mass measured by CMR and compare estimates of the prevalence and predictive value of LV hypertrophy defined by a new allometric height-weight index, LV mass/body surface area (BSA), height indices (a new allometric height index; and previously derived indices from echocardiographic measurements: LV mass/height2, LV mass/height2.7), and non-indexed LV mass. 5,004 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) with CMR measurements of LV mass and no clinical cardiovascular disease at baseline were followed for a median of 4.1 years. The new indices and limits for hypertrophy (95th percentile) were derived from 822 normal-weight, normotensive, non-diabetic MESA participants. 107 events (coronary heart disease or stroke) were observed. The estimated prevalence of hypertrophy at baseline and hazard ratio for event associated with hypertrophy were 8% and 2.4 with the new allometric height-weight index, 11% and 2.2 with LV mass/BSA, 23–24% and 2.0–2.1 with height indices, and 20% and 1.7 with non-indexed LV mass. A statistically significant difference was detected between the hazard ratios based on the new height-weight index and non-indexed LV mass. The prevalence of hypertrophy is higher for indices that do not account for weight. The predictive value of hypertrophy is significantly better with the new allometric height-weight index than with non-indexed LV mass and may be better than indices without weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Gordon T, Castelli WP, Margolis JR (1970) Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease. The Framingham study. Ann Intern Med 72:813–822

    CAS  PubMed  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1989) Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The framingham heart study. Ann Intern Med 110:101–107

    CAS  PubMed  Google Scholar 

  3. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    CAS  PubMed  Google Scholar 

  4. Tsang TS, Barnes ME, Gersh BJ, Takemoto Y, Rosales AG, Bailey KR, Seward JB (2003) Prediction of risk for first age-related cardiovascular events in an elderly population: the incremental value of echocardiography. J Am Coll Cardiol 42:1199–1205

    Article  PubMed  Google Scholar 

  5. Gottdiener JS, Arnold AM, Aurigemma GP, Polak FJ, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC (2000) Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol 35:1628–1637

    Article  CAS  PubMed  Google Scholar 

  6. Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS (1992) The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med 117:831–836

    CAS  PubMed  Google Scholar 

  7. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27:65–75

    Article  PubMed  Google Scholar 

  8. Aronow WS, Ahn C, Kronzon I, Koenigsberg M (1991) Congestive heart failure, coronary events and atherothrombotic brain infarction in elderly blacks and whites with systemic hypertension and with and without echocardiographic and electrocardiographic evidence of left ventricular hypertrophy. Am J Cardiol 67:295–299

    Article  CAS  PubMed  Google Scholar 

  9. Kupari M, Lindroos M, Iivanainen AM, Heikkila J, Tilvis R (1997) Congestive heart failure in old age: prevalence, mechanisms and 4-year prognosis in the Helsinki Ageing Study. J Intern Med 241:387–394

    Article  CAS  PubMed  Google Scholar 

  10. Natori S, Lai S, Finn P, Gomes AS, Hundley WG, Jerosch-Herold M, Pearson G, Sinha S, Arai A, Lima JA, Bluemke DA (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. Am J Roentgenol 186:S357–S365

    Article  Google Scholar 

  11. Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA (2008) Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation 117:2279–2287

    Article  PubMed  Google Scholar 

  12. Dubois D, Dubois EF (1916) A formula to estimate the approximate surface if height and weight are known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  13. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  14. de Simone G, Devereux RB, Roman MJ, Alderman MH, Laragh JH (1994) Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension 23:600–606

    PubMed  Google Scholar 

  15. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  PubMed  Google Scholar 

  16. Lauer MS, Anderson KM, Larson MG, Daniel L (1994) A new method for indexing left ventricular mass for differences in body size. Am J Cardiol 74:487–491

    Article  CAS  PubMed  Google Scholar 

  17. Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA (1995) Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol 76:699–701

    Article  CAS  PubMed  Google Scholar 

  18. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Szklo M, Tracy RP (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156:871–881

    Article  PubMed  Google Scholar 

  19. NHLBI Expert Panel on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 6: 51S–209S

    Google Scholar 

  20. WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic. Geneva, Switzerland: World Health Organization; 2000. WHO Technical Report Series 894

  21. 1997 Joint National Committee (1997) The sixth report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med 157: 2413–2446

    Google Scholar 

  22. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P (2003) Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  PubMed  Google Scholar 

  23. Chang JJ, Rabinowitz D, Shea S (2003) Sources of variability in blood pressure measurement using the Dinamap PRO 100 automated oscillometric device. Am J Epidemiol 158:1218–1226

    Article  PubMed  Google Scholar 

  24. Hume R (1966) Prediction of lean body mass from height and weight. J Clin Path 19:389–391

    Article  CAS  PubMed  Google Scholar 

  25. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345

    Article  CAS  PubMed  Google Scholar 

  26. Vasan RS, Larson MG, Levy D, Evans JC, Benjamin EJ (1997) Distribution and categorization of echocardiographic measurements in relation to reference limits. The Framingham Heart Study: formulation of a height- and sex-specific classification and its prospective validation. Circulation 96:1863–1873

    CAS  PubMed  Google Scholar 

  27. Salton CJ, Chuang ML, O’Donnell CJ, Kupka MJ, Larson MG, Kissinger KV, Edelman RR, Levy D, Manning WJ (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. J Am Coll Cardiol 39:1055–1060

    Article  PubMed  Google Scholar 

  28. Liao Y, Cooper RS, Durazo-Arvizu R, Mensah GA, Ghali JK (1997) Prediction of mortality risk by different methods of indexation for left ventricular mass. J Am Coll Cardiol 29:641–647

    Article  CAS  PubMed  Google Scholar 

  29. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK (1996) The progression from hypertension to congestive heart failure. JAMA 275:1557–1562

    Article  CAS  PubMed  Google Scholar 

  30. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    Article  CAS  PubMed  Google Scholar 

  31. Katz AM (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110

    CAS  PubMed  Google Scholar 

  32. Lauer MS, Anderson KM, Levy D (1991) Influence of contemporary versus 30-year blood pressure levels on left ventricular mass and geometry: the framingham heart study. J Am Coll Cardiol 18:1287–1294

    Article  CAS  PubMed  Google Scholar 

  33. Jilaihawi H, Greaves S, Rouleau JL, Pfeffer MA, Solomon SD (2003) Healing and early afterload reducing therapy trial investigators. Left ventricular hypertrophy and the risk of subsequent left ventricular remodeling following myocardial infarction. Am J Cardiol 91:723–726

    Article  PubMed  Google Scholar 

  34. Lauer MS, Anderson KM, Kannel WB, Levy D (1991) The impact of obesity on left ventricular mass and geometry. The framingham heart study. JAMA 266:231–236

    Article  CAS  PubMed  Google Scholar 

  35. Lee M, Gardin JM, Lynch JC, Smith VE, Tracy RP, Savage PJ, Szklo M, Ward BJ (1997) Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: the cardiovascular health study. Am Heart J 133:36–43

    Article  CAS  PubMed  Google Scholar 

  36. Gardin JM, Arnold A, Gottdiener JS, Wong ND, Fried LP, Klopfenstein HS, O’Leary DH, Tracy R, Kronmal R (1997) Left ventricular mass in the elderly. The cardiovascular health study. Hypertension 29:1095–1103

    CAS  PubMed  Google Scholar 

  37. Heckbert SR, Post W, Pearson GD, Arnett DK, Gomes AS, Jerosch-Herold M, Hundley WG, Lima JA, Bluemke DA (2006) Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol 48:2285–2292

    Article  PubMed  Google Scholar 

  38. Devereux RB, Dahlof B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris KE, Edelman JM, Wachtell K (2004) Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 110:1456–1462

    Article  CAS  PubMed  Google Scholar 

  39. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris K, Aurup P, Dahlof B (2004) Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292:2350–2356

    Article  CAS  PubMed  Google Scholar 

  40. Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristianson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Snapinn S, Wedel H (2002) LIFE (Losartan Intervention for Endpoint Reduction) Study Group. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA 288:1491–1498

    Article  CAS  PubMed  Google Scholar 

  41. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlof B (2004) LIFE study investigators. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA 292:2343–2349

    Article  CAS  PubMed  Google Scholar 

  42. Gardin JM, Lauer MS (2004) Left ventricular hypertrophy: the next treatable, silent killer? JAMA 292:2396–2398

    Article  CAS  PubMed  Google Scholar 

  43. de Simone G, Kizer JR, Chinali M, Roman MJ, Bella JN, Best LG, Lee ET, Devereux RB (2005) Normalization for body size and population-attributable risk of left ventricular hypertrophy. The strong heart study. Am J Hypertens 18:191–196

    Article  PubMed  Google Scholar 

  44. de Simone G, Devereux RB, Maggioni AP, Gorini M, de Divitiis O, Verdecchia P (2005) Different normalizations for body size and population attributable risk of left ventricular hypertrophy: the MAVI study. Am J Hypertens 18:1288–1293

    Article  PubMed  Google Scholar 

  45. Marcus JT, DeWaal LK, Gotte MJ, van der Geest RJ, Heethaar RM, Van Rossum AC (1999) MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imag 15:411–419

    Article  CAS  Google Scholar 

  46. Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W, Neubauer S, Hahn D (2000) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  CAS  PubMed  Google Scholar 

  47. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  48. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Funding sources

This research was supported by contracts N01-HC-95159 and N01-HC-95168 from the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndia C. Brumback.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumback, L.C., Kronmal, R., Heckbert, S.R. et al. Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification. Int J Cardiovasc Imaging 26, 459–468 (2010). https://doi.org/10.1007/s10554-010-9584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9584-5

Keywords

Navigation