Skip to main content
Log in

Optimization of the Composition of an Imidazoline Corrosion Inhibitor for the Protection of Equipment in Carbon Dioxide-Rich and Acidic Environments

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

We examine the protective properties of imidazoline corrosion inhibitors with added thiourea and potassium iodide. A model of reservoir water saturated with carbon dioxide as well as hydrochloric and sulfamic acids were taken as aggressive media. The corrosion inhibition efficiency was evaluated using a gravimetric method under dynamic and static conditions in the carbon dioxide‑rich and acidic environments, respectively. The effect of individual compounds on the inhibition mechanism for metal was determined experimentally in media with different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. K. Ishmukhamedova and A. U. Kushekov, Problems of Metal Corrosion in the Petroleum and Natural Gas Refinery Industry [in Russian], Atyrau University of Petroleum and Gas (2019), p. 9.

  2. A. A. Igosheva, Innovatsionnaya Nauka, 11, No. 11, 71-74 (2018).

    Google Scholar 

  3. R. V. Kashkovskii and K. A. Ibatullin, Nauka i Tekhnika v Gazovoi Promyshlennosti, No. 3, 71 (2016).

    Google Scholar 

  4. L. S. Moiseeva, Zashchita Metallov, 41, No. 1, 82‑90 (2005).

    Google Scholar 

  5. A. N. Markin, Zashchita Metallov, 32, No. 5, 497 (1996).

    Google Scholar 

  6. S. Nesic, Corrosion Science, 49, 4308‑4338 (2007).

    Article  CAS  Google Scholar 

  7. M. A. Silin et al., Acid Treatments of Reservoirs and Methods for Testing Acid Compositions [in Russian], Gubkin Russian State University of Oil and Gas, Moscow (2011), p. 120.

    Google Scholar 

  8. M. A. Silin et al., Field Chemistry [in Russian], Gubkin Russian State University of Oil and Gas, Moscow (2016).

    Google Scholar 

  9. P. A. Schweitzer, Fundamentals of Corrosion. Mechanism, Causes and Preventive Methods, CRC Press (2009), p. 426.

    Book  Google Scholar 

  10. M. P. Chakravarthy and K. N. Mohana, International Scholarly Research Notices, 2014 (2014).

  11. A. Edwards et al., Corrosion Science, 36, No. 2, 315‑325 (1994).

    Article  CAS  Google Scholar 

  12. S. A. Umoren and M. M. Solomon, Journal of Industrial and Engineering Chemistry , 21, 81‑100 (2015).

    Article  CAS  Google Scholar 

  13. S. A. Umoren, O. Ogbobe, E. E. Ebenso, et al., Pigment & Resin Technology, 35, No. 5, 284‑294 (2006).

    Article  CAS  Google Scholar 

  14. A. V. Mamlieva, N. N. Mikhailova, and S. Yu. Savshukova, NefteGazoKhimiya, No. 1, 30‑33 (2020).

    Google Scholar 

  15. E. A. Shitikova and T. P. D’yachkova, Voprosy Sovremennoi Nauki i Praktiki, No. 3, 209‑216 (2016).

  16. A. E. Nakulina, L. E. Odysheva, and V. S. Mal’kov, Perspectives for the Development of Basic Science. Collection of Scientific Articles of the XI International Conference of Students and Young Scientists, Tomsk April 22‑25, 2014 [in Russian], pp. 439‑441.

  17. L. A. Magadova, K. A. Poteshkina, V. D. Vlasova, et al., Tekhnologiya Nefti i Gaza, No. 4, 14‑18 (2020).

    Google Scholar 

  18. M. A. Silin et al., Zhurnal Prikladnoi Khimii, 92, No. S13, 1732‑1741 (2019).

    Article  Google Scholar 

  19. S. Mikhail et al., Energies, 15, No. 1, 24 (2021).

    Article  Google Scholar 

  20. J. Tan et al., RSC Advances, 10, No. 26, 15163‑15170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. S. Ivanov, Inhibitors of Metal Corrosion in Acid Media [in Russian], St. Petersburg, Metallurgiya (2005).

  22. L. Guo et al., Int. J. Electrochem. Sci., 12, No. 8, 7064‑7074 (2017).

    Article  CAS  Google Scholar 

  23. C. B. Shen et al., Corrosion Science, 48, No. 7, 1655‑1665 (2006).

    Article  CAS  Google Scholar 

  24. R. T. Loto et al., J. Mater. Environ. Sci., 3, No. 5, 885‑894 (2012).

    CAS  Google Scholar 

  25. D. Quy Huong, T. Duong, and P. C. Nam, ACS Omega, 4, No. 11, 14478‑14489 (2019).

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under agreement №075-15-2022-300 dated 18.04.2022 within the framework of the development program for a world-class Research Center «Efficient development of the global liquid hydrocarbon reserves».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Kotekhova.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 34–39 November – December 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silin, M.A., Magadova, L.A., Poteshkina, K.A. et al. Optimization of the Composition of an Imidazoline Corrosion Inhibitor for the Protection of Equipment in Carbon Dioxide-Rich and Acidic Environments. Chem Technol Fuels Oils 58, 952–956 (2023). https://doi.org/10.1007/s10553-023-01474-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01474-z

Keywords

Navigation