Skip to main content

Advertisement

Log in

Dietary cadmium and risk of invasive postmenopausal breast cancer in the VITAL cohort

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to estimate the association between dietary intake of cadmium, a carcinogenic heavy metal, and risk of invasive postmenopausal breast cancer.

Methods

Study subjects were 30,543 postmenopausal women in the VITamins And Lifestyle (VITAL) cohort who completed a food frequency questionnaire (FFQ) at baseline (2000–2002). Dietary cadmium consumption was estimated by combining FFQ responses with US Food and Drug Administration data on food cadmium content. Incidence of invasive breast cancer was ascertained through linkage of the cohort to the western Washington Surveillance, Epidemiology, and End Results cancer registry through 31 December 2009. Cox regression was applied to estimate adjusted hazard ratios (aHRs) and 95 % confidence intervals (CIs) for breast cancer with increasing dietary cadmium intake, adjusted for total energy intake, smoking history, consumption of vegetables, potatoes, and whole grains, multivitamin use, education, race, body mass index, physical activity, age at first birth, postmenopausal hormone use, and mammography.

Results

Vegetables and grains together contributed an average of 66 % of estimated dietary cadmium. During a mean of 7.5 years of follow-up, 1,026 invasive postmenopausal breast cancers were identified. Among 899 cases with complete covariate information, no evidence of an association between dietary cadmium intake and breast cancer risk was observed (aHR (95 % CI), highest to lowest quartile cadmium: 1.00 (0.72–1.41), p trend = 0.95). No evidence was found for interactions between dietary cadmium and breast cancer risk factors, smoking habits, or total intake of calcium, iron, or zinc from diet, supplements, and multivitamins.

Conclusions

This study does not support the hypothesis that dietary cadmium intake is a risk factor for breast cancer. However, non-differential measurement error in the estimate of cadmium intake is likely the most important factor that could have obscured an association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  2. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  3. International Agency for Research on Cancer (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 58. Lyon, France, WHO/IARC

  4. Alloway BJ, Jackson AP, Morgan H (1990) The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Sci Total Environ 91:223–236

    Article  PubMed  CAS  Google Scholar 

  5. Hellstrom L, Persson B, Brudin L, Grawe KP, Oborn I, Jarup L (2007) Cadmium exposure pathways in a population living near a battery plant. Sci Total Environ 373:447–455

    Article  PubMed  Google Scholar 

  6. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  PubMed  CAS  Google Scholar 

  7. Pappas RS, Polzin GM, Zhang L, Watson CH, Paschal DC, Ashley DL (2006) Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem Toxicol 44:714–723

    Article  PubMed  CAS  Google Scholar 

  8. Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for cadmium. ATSDR, Atlanta

    Google Scholar 

  9. Akesson A, Berglund M, Schutz A, Bjellerup P, Bremme K, Vahter M (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287

    Article  PubMed  Google Scholar 

  10. Berglund M, Akesson A, Nermell B, Vahter M (1994) Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect 102:1058–1066

    Article  PubMed  CAS  Google Scholar 

  11. Antila E, Mussalo-Rauhamaa H, Kantola M, Atroshi F, Westermarck T (1996) Association of cadmium with human breast cancer. Sci Total Environ 186:251–256

    Article  PubMed  CAS  Google Scholar 

  12. Ionescu JG, Novotny J, Stejskal V, Latsch A, Blaurock-Busch E, Eisenmann-Klein M (2006) Increased levels of transition metals in breast cancer tissue. Neuro Endocrinol Lett 27(Suppl 1):36–39

    PubMed  CAS  Google Scholar 

  13. Strumylaite L, Bogusevicius A, Abdrachmanovas O, et al. (2011) Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res Treat 125:511–517

    Google Scholar 

  14. Lag M, Rodionov D, Ovrevik J, Bakke O, Schwarze PE, Refsnes M (2010) Cadmium-induced inflammatory responses in cells relevant for lung toxicity: expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicol Lett 193:252–260

    Article  PubMed  CAS  Google Scholar 

  15. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  PubMed  CAS  Google Scholar 

  16. Asmuss M, Mullenders LH, Hartwig A (2000) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol Lett 112–113:227–231

    Article  PubMed  Google Scholar 

  17. Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 213:282–290

    Article  PubMed  CAS  Google Scholar 

  18. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    Article  PubMed  CAS  Google Scholar 

  19. Stoica A, Katzenellenbogen BS, Martin MB (2000) Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol 14:545–553

    Article  PubMed  CAS  Google Scholar 

  20. Liu Z, Yu X, Shaikh ZA (2008) Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol 228:286–294

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Morales P, Saceda M, Kenney N et al (1994) Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269:16896–16901

    PubMed  CAS  Google Scholar 

  22. Johnson MD, Kenney N, Stoica A et al (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9:1081–1084

    Article  PubMed  CAS  Google Scholar 

  23. Benbrahim-Tallaa L, Tokar EJ, Diwan BA, Dill AL, Coppin JF, Waalkes MP (2009) Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ Health Perspect 117:1847–1852

    Article  PubMed  CAS  Google Scholar 

  24. Thun MJ, Schnorr TM, Smith AB, Halperin WE, Lemen RA (1985) Mortality among a cohort of U.S. cadmium production workers–an update. J Natl Cancer Inst 74:325–333

    PubMed  CAS  Google Scholar 

  25. Stayner L, Smith R, Thun M, Schnorr T, Lemen R (1992) A dose-response analysis and quantitative assessment of lung cancer risk and occupational cadmium exposure. Ann Epidemiol 2:177–194

    Article  PubMed  CAS  Google Scholar 

  26. Verougstraete V, Lison D, Hotz P (2003) Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. J Toxicol Environ Health B Crit Rev 6:227–255

    Article  PubMed  CAS  Google Scholar 

  27. Adams SV, Passarelli MN, Newcomb PA (2012) Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup Environ Med 69:153–156

    Google Scholar 

  28. Nawrot T, Plusquin M, Hogervorst J et al (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  PubMed  CAS  Google Scholar 

  29. Julin B, Wolk A, Bergkvist L, Bottai M, Akesson A (2012) Dietary cadmium exposure and risk of postmenopausal breast cancer: a population-based prospective cohort study. Cancer Res 72:1459–1466

    Article  PubMed  CAS  Google Scholar 

  30. Akesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68:6435–6441

    Article  PubMed  CAS  Google Scholar 

  31. Julin B, Wolk A, Akesson A (2011) Dietary cadmium exposure and risk of epithelial ovarian cancer in a prospective cohort of Swedish women. Br J Cancer 105:441–444

    Article  PubMed  CAS  Google Scholar 

  32. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA (2006) Cadmium exposure and breast cancer risk. J Natl Cancer Inst 98:869–873

    Article  PubMed  CAS  Google Scholar 

  33. Gallagher CM, Chen JJ, Kovach JS (2010) Environmental cadmium and breast cancer risk. Aging (Albany NY) 2:804–814

    CAS  Google Scholar 

  34. White E, Patterson RE, Kristal AR et al (2004) VITamins And Lifestyle cohort study: study design and characteristics of supplement users. Am J Epidemiol 159:83–93

    Article  PubMed  Google Scholar 

  35. Kristal AR, Feng Z, Coates RJ, Oberman A, George V (1997) Associations of race/ethnicity, education, and dietary intervention with the validity and reliability of a food frequency questionnaire: the Women’s Health Trial Feasibility Study in Minority Populations.[comment][erratum appears in Am J Epidemiol 1998 Oct 15;148(8):820]. Am J Epidemiol 146: 856–869

    Google Scholar 

  36. Kristal AR, Patterson RE, Neuhouser ML et al (1998) Olestra Postmarketing Surveillance Study: design and baseline results from the sentinel site. J Am Diet Assoc 98:1290–1296

    Article  PubMed  CAS  Google Scholar 

  37. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9:178–187

    Article  PubMed  CAS  Google Scholar 

  38. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T (1999) Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol 9:178–187

    Article  PubMed  CAS  Google Scholar 

  39. Schakel S, Buzzard IM, Gebhardt S (1997) Procedures for estimating nutrient values for food composition databases. J Food Compos Anal 10:102–114

    Article  CAS  Google Scholar 

  40. Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s Total Diet Study food list and diets. J Expo Sci Environ Epidemiol 17:573–582

    Article  PubMed  CAS  Google Scholar 

  41. Egan SK, Tao SS, Pennington JA, Bolger PM (2002) US Food and Drug Administration’s Total Diet Study: intake of nutritional and toxic elements, 1991–1996. Food Addit Contam 19:103–125

    Article  PubMed  CAS  Google Scholar 

  42. United States Food and Drug Administration (2008) Total Diet Study website. http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/TotalDietStudy/default.htm. Accessed 17 Dec 2011

  43. Satia-Abouta J, Patterson RE, King IB et al (2003) Reliability and validity of self-report of vitamin and mineral supplement use in the vitamins and lifestyle study. Am J Epidemiol 157:944–954

    Article  PubMed  Google Scholar 

  44. Satia-Abouta J, Kristal AR, Patterson RE, Littman AJ, Stratton KL, White E (2003) Dietary supplement use and medical conditions: the VITAL study. Am J Prev Med 24:43–51

    Article  PubMed  Google Scholar 

  45. Medical Economics Staff (2002) Physicians desk reference for nonprescription drugs and dietary supplements. Medical Economics, Montvale, NJ

    Google Scholar 

  46. Littman AJ, White E, Kristal AR, Patterson RE, Satia-Abouta J, Potter JD (2004) Assessment of a one-page questionnaire on long-term recreational physical activity. Epidemiology 15:105–113

    Article  PubMed  Google Scholar 

  47. Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117:190–196

    PubMed  CAS  Google Scholar 

  48. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238:266–271

    Article  PubMed  CAS  Google Scholar 

  49. Lauwerys RR, Bernard AM, Roels HA, Buchet JP (1994) Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:1391–1394

    PubMed  CAS  Google Scholar 

  50. Nordberg GF, Kjellstrom T (1979) Metabolic model for cadmium in man. Environ Health Perspect 28:211–217

    Article  PubMed  CAS  Google Scholar 

  51. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  PubMed  CAS  Google Scholar 

  52. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  PubMed  CAS  Google Scholar 

  53. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  PubMed  CAS  Google Scholar 

  54. Tallkvist J, Bowlus CL, Lonnerdal B (2001) DMT1 gene expression and cadmium absorption in human absorptive enterocytes. Toxicol Lett 122:171–177

    Article  PubMed  CAS  Google Scholar 

  55. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA (2007) Urinary cadmium levels and tobacco smoke exposure in women age 20–69 years in the United States. J Toxicol Environ Health A 70:1779–1782

    Article  PubMed  CAS  Google Scholar 

  56. Richter PA, Bishop EE, Wang J, Swahn MH (2009) Tobacco smoke exposure and levels of urinary metals in the U.S. youth and adult population: the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Int J Environ Res Public Health 6:1930–1946

    Article  PubMed  CAS  Google Scholar 

  57. Freedman LS, Schatzkin A, Midthune D, Kipnis V (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103:1086–1092

    Article  PubMed  Google Scholar 

  58. Kipnis V, Subar AF, Midthune D, et al (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158:14–21; discussion 2–6

    Google Scholar 

  59. Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 49:473–479

    Article  CAS  Google Scholar 

  60. Cataldo DA, Garland TR, Wildung RE (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol 68:835–839

    Article  PubMed  CAS  Google Scholar 

  61. Choudhury H, Harvey T, Thayer WC et al (2001) Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure–biokinetics model. J Toxicol Environ Health A 63:321–350

    Article  PubMed  CAS  Google Scholar 

  62. Becker W, Kumpulainen J (1991) Contents of essential and toxic mineral elements in Swedish market-basket diets in 1987. Br J Nutr 66:151–160

    Article  PubMed  CAS  Google Scholar 

  63. Jorhem L, Sundström B (1993) Levels of lead, cadmium, zinc, copper, nickel, chromium, manganese, and cobalt in foods on the Swedish Market, 1983–1990. J Food Compos Anal 6:223–241

    Article  CAS  Google Scholar 

  64. Jorhem L, Sundstrom B, Engman J (2001) Cadmium and other metals in Swedish wheat and rye flours: longitudinal study, 1983–1997. J AOAC Int 84:1984–1992

    PubMed  CAS  Google Scholar 

  65. Vahter M, Akesson A, Liden C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95

    Article  PubMed  CAS  Google Scholar 

  66. Vahter M, Berglund M, Nermell B, Akesson A (1996) Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol Appl Pharmacol 136:332–341

    Article  PubMed  CAS  Google Scholar 

  67. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  68. Yassin AS, Martonik JF (2004) Urinary cadmium levels in the U S working population, 1988–1994. J Occup Environ Hyg 1:324–333

    Article  PubMed  CAS  Google Scholar 

  69. Olsson IM, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine–impact of sex, age, dietary intake, iron status, and former smoking–association of renal effects. Environ Health Perspect 110:1185–1190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Cancer Institute training grant R25CA094880 (SVA) and by a Cancer Prevention Fellowship from the Prevent Cancer Foundation, American Society of Preventive Oncology, and American Society of Clinical Oncology (SVA); National Cancer Institute and National Institutes of Health Office of Dietary Supplements K05CA154337 (EW); National Cancer Institute K05CA152715 (PAN); and NIEHS R01ES019667 (PAN). Funding agencies played no role in the study or preparation of this report.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott V. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, S.V., Newcomb, P.A. & White, E. Dietary cadmium and risk of invasive postmenopausal breast cancer in the VITAL cohort. Cancer Causes Control 23, 845–854 (2012). https://doi.org/10.1007/s10552-012-9953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-9953-6

Keywords

Navigation