Skip to main content

Advertisement

Log in

Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast–breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast–tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BPs:

Bisphosphonates

BrCa:

Breast cancer

CCL2:

Chemokine, CC motif, ligand 2

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

Iban:

Ibandronate

MSCs:

Mesenchymal stem cells

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

OB-CM:

Conditioned medium of the osteoblastic cell line CAL72

Pam:

Pamidronate

PARP1:

Poly (ADP-ribose) polymerase 1

RCC:

Renal cell carcinoma

Zol:

Zoledronate

References

  1. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823

    Article  PubMed  CAS  Google Scholar 

  2. Guise TA, Brufsky A, Coleman RE (2010) Understanding and optimizing bone health in breast cancer. Curr Med Res Opin 26:3–20

    Article  PubMed  CAS  Google Scholar 

  3. Gnant M, Hadji P (2010) Prevention of bone metastases and management of bone health in early breast cancer. Breast Cancer Res 12(6):216

    Article  PubMed  CAS  Google Scholar 

  4. Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97(3 Suppl):834–839

    Article  PubMed  Google Scholar 

  5. Lipton A, Theriault RL, Hortobagyi GN, Simeone J, Knight RD, Mellars K, Reitsma DJ, Heffernan M, Seaman JJ (2000) Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 88(5):1082–1090

    Article  PubMed  CAS  Google Scholar 

  6. Body JJ, Bartl R, Burckhardt P, Delmas PD, Diel IJ, Fleisch H, Kanis JA, Kyle RA, Mundy GR, Paterson AH et al (1998) Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol 16(12):3890–3899

    PubMed  CAS  Google Scholar 

  7. Mundy GR, Yoneda T (1998) Bisphosphonates as anticancer drugs. N Engl J Med 339(6):398–400

    Article  PubMed  CAS  Google Scholar 

  8. Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759

    Article  PubMed  CAS  Google Scholar 

  9. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589

    Article  PubMed  CAS  Google Scholar 

  10. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91(5):2004–2011

    Article  PubMed  CAS  Google Scholar 

  11. Vitte C, Fleisch H, Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137(6):2324–2333

    Article  PubMed  CAS  Google Scholar 

  12. Fromigue O, Body JJ (2002) Bisphosphonates influence the proliferation and the maturation of normal human osteoblasts. J Endocrinol Invest 25(6):539–546

    PubMed  CAS  Google Scholar 

  13. Xiong Y, Yang HJ, Feng J, Shi ZL, Wu LD (2009) Effects of alendronate on the proliferation and osteogenic differentiation of MG-63 cells. J Int Med Res 37(2):407–416

    Article  PubMed  CAS  Google Scholar 

  14. Corrado A, Neve A, Maruotti N, Gaudio A, Marucci A, Cantatore FP (2010) Dose-dependent metabolic effect of zoledronate on primary human osteoblastic cell cultures. Clin Exp Rheumatol 28(6):873–879

    PubMed  CAS  Google Scholar 

  15. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Grundker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291(3):680–686

    Article  PubMed  CAS  Google Scholar 

  16. Frediani B, Spreafico A, Capperucci C, Chellini F, Gambera D, Ferrata P, Baldi F, Falsetti P, Santucci A, Bocchi L et al (2004) Long-term effects of neridronate on human osteoblastic cell cultures. Bone 35(4):859–869

    Article  PubMed  CAS  Google Scholar 

  17. Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, Evdokiou A, Lynch K, Atkins GJ, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 34(1):112–123

    Article  PubMed  CAS  Google Scholar 

  18. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P et al (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23(1):6–16

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Moreno C, Serrano S, Nacher M, Farre M, Diez A, Marinoso ML, Carbonell J, Mellibovsky L, Nogues X, Ballester J et al (1998) Effect of alendronate on cultured normal human osteoblasts. Bone 22(3):233–239

    Article  PubMed  CAS  Google Scholar 

  20. Greiner S, Kadow-Romacker A, Lubberstedt M, Schmidmaier G, Wildemann B (2007) The effect of zoledronic acid incorporated in a poly(D,L-lactide) implant coating on osteoblasts in vitro. J Biomed Mater Res A 80(4):769–775

    PubMed  CAS  Google Scholar 

  21. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60(21):6001–6007

    PubMed  CAS  Google Scholar 

  22. Senaratne SG, Colston KW (2002) Direct effects of bisphosphonates on breast cancer cells. Breast Cancer Res 4(1):18–23

    Article  PubMed  CAS  Google Scholar 

  23. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60(11):2949–2954

    PubMed  CAS  Google Scholar 

  24. Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82(8):1459–1468

    Article  PubMed  CAS  Google Scholar 

  25. Rachner TD, Singh SK, Schoppet M, Benad P, Bornhäuser M, Ellenrieder V, Ebert R, Jakob F, Hofbauer LC (2010) Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer Lett 287(1):109–116

    Article  PubMed  CAS  Google Scholar 

  26. Dedes PG, Gialeli C, Tsonis AI, Kanakis I, Theocharis AD, Kletsas D, Tzanakakis GN, Karamanos NK (2012) Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim Biophys Acta 1820(12):1926–1939

    Article  PubMed  CAS  Google Scholar 

  27. Coleman RE, Lipton A, Roodman GD, Guise TA, Boyce BF, Brufsky AM, Clezardin P, Croucher PI, Gralow JR, Hadji P et al (2010) Metastasis and bone loss: advancing treatment and prevention. Cancer Treat Rev 36(8):615–620

    Article  PubMed  Google Scholar 

  28. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  29. Roodman DG (2003) Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer 97(3 Suppl):733–738

    Article  Google Scholar 

  30. Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159(1):109–113

    Article  PubMed  CAS  Google Scholar 

  31. Dieterle A, Orth R, Daubrawa M, Grotemeier A, Alers S, Ullrich S, Lammers R, Wesselborg S, Stork B (2009) The Akt inhibitor triciribine sensitizes prostate carcinoma cells to TRAIL-induced apoptosis. Int J Cancer 125(4):932–941

    Article  PubMed  CAS  Google Scholar 

  32. Masuda T, Deng X, Tamai R (2009) Mouse macrophages primed with alendronate down-regulate monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) production in response to Toll-like receptor (TLR) 2 and TLR4 agonist via Smad3 activation. Int Immunopharmacol 9(9):1115–1121

    Article  PubMed  CAS  Google Scholar 

  33. Schüler Y, Lee-Thedieck C, Geiger K, Kaiser T, Ino Y, Aicher WK, Klein G (2012) Osteoblast-secreted factors enhance the expression of dysadherin and CCL2-dependent migration of renal carcinoma cells. Int J Cancer 130(2):288–299

    Article  PubMed  Google Scholar 

  34. Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28(5):465–473

    Article  PubMed  CAS  Google Scholar 

  35. Coleman ML, Olson MF (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9(5):493–504

    Article  PubMed  CAS  Google Scholar 

  36. Conti P, DiGioacchino M (2001) MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc 22(3):133–137

    Article  PubMed  CAS  Google Scholar 

  37. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, O’Brien T, Kerin MJ (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124(2):326–332

    Article  PubMed  CAS  Google Scholar 

  38. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282(45):33098–33106

    Article  PubMed  CAS  Google Scholar 

  39. Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, Neeley CK, Pienta KJ (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8(7):578–586

    Article  PubMed  CAS  Google Scholar 

  40. Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE, Melhem MF, Yao Z, Zhang J (2006) Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate 66(12):1311–1318

    Article  PubMed  CAS  Google Scholar 

  41. Loberg RD, Tantivejkul K, Craig M, Neeley CK, Pienta KJ (2007) PAR1-mediated RhoA activation facilitates CCL2-induced chemotaxis in PC-3 cells. J Cell Biochem 101(5):1292–1300

    Article  PubMed  CAS  Google Scholar 

  42. Kinder M, Chislock E, Bussard KM, Shuman L, Mastro AM (2008) Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res 314(1):173–183

    Article  PubMed  CAS  Google Scholar 

  43. Zhu J, Jia X, Xiao G, Kang Y, Partridge NC, Qin L (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282(37):26656–26664

    Article  PubMed  CAS  Google Scholar 

  44. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  PubMed  CAS  Google Scholar 

  45. Festuccia C, Bologna M, Gravina GL, Guerra F, Angelucci A, Villanova I, Millimaggi D, Teti A (1999) Osteoblast conditioned media contain TGF-beta1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. Int J Cancer 81(3):395–403

    Article  PubMed  CAS  Google Scholar 

  46. Gallo M, De Luca A, Lamura L, Normanno N (2012) Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: implications for adjuvant therapy of breast cancer. Ann Oncol 23(3):597–604

    Article  PubMed  CAS  Google Scholar 

  47. Walter M, Liang S, Ghosh S, Hornsby PJ, Li R (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28(30):2745–2755

    Article  PubMed  CAS  Google Scholar 

  48. Knerr K, Ackermann K, Neidhart T, Pyerin W (2004) Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int J Cancer 111(1):152–159

    Article  PubMed  CAS  Google Scholar 

  49. Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S, Wakefield LM (2006) Chemokine (C–C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66(14):7176–7184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Bernd Rolauffs (Center for Traumatology, BGU Hospital Tübingen) for his assistance in obtaining the bone specimens and Alice Mager for technical advice and help. This work was supported by a grant of the IZKF program of the Medical Faculty of the University of Tübingen (Grant No. 1686-0-0), by Novartis Pharma AG, Nürnberg, Germany, and by the DFG Graduate School 794. Part of this work was supported by Novartis Pharma AG (Nürnberg, Germany) to TK, GK, TF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerd Klein or Tanja Fehm.

Additional information

* Gerd Klein and Tanja Fehm have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, T., Teufel, I., Geiger, K. et al. Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells. Breast Cancer Res Treat 140, 35–48 (2013). https://doi.org/10.1007/s10549-013-2613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2613-z

Keywords

Navigation