Skip to main content

Advertisement

Log in

Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Concomitant usage of lapatinib, a cytochrome P450 (CYP) 3A4 substrate and dexamethasone, a CYP3A4 inducer, is a pharmacokinetic drug–drug interaction. This combination may increase the formation of reactive lapatinib metabolites, which is potentially hepatotoxic. This study aims to evaluate the clinical effect of dexamethasone on incidence of hepatotoxicity and to ascertain its in vitro role using a parallel cell culture model experimental setup. Clinical effects of dexamethasone on lapatinib-induced hepatotoxicity were evaluated in a nested case–control study based on 120 patient data obtained from our records. For the in vitro experiment, metabolically competent transforming growth factor α mouse hepatocytes (TAMH) were treated with lapatinib and viabilities were compared in the presence or absence of dexamethasone. After adjusting for confounders, patients receiving the combination were 4.57 times (95% CI 1.23–16.88, p = 0.02) more likely to develop hepatotoxicity and 3.48 times (95% CI 1.24–9.80, p = 0.02) more likely to develop a clinically important change in alanine aminotransferase than compared to the other group. Treatment of TAMH cells with lapatinib and dexamethasone caused a further reduction in viability, as compared to treatment with lapatinib alone. At 5 μM lapatinib, the introduction of dexamethasone 20 μM produced a 59% decline in viability. This is the first study to document a clinically important interaction between lapatinib and dexamethasone, which associates with an increased occurrence of hepatotoxicity. The in vitro findings have provided substantiating evidence and insights on the role of dexamethasone in lapatinib-induced hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21:6255–6263. doi:10.1038/sj.onc.1205794

    Article  PubMed  CAS  Google Scholar 

  2. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. doi:10.1056/NEJMoa064320

    Article  PubMed  CAS  Google Scholar 

  3. Johnston S, Pippen J Jr, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF, Maltzman J, Florance A, O’Rourke L, Oliva C, Stein S, Pegram M (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor—positive metastatic breast cancer. J Clin Oncol 27:5538–5546. doi:10.1200/JCO.2009.23.3734

    Article  PubMed  CAS  Google Scholar 

  4. Gomez HL, Doval DC, Chavez MA, Ang PCS, Aziz Z, Nag S, Ng C, Franco SX, Chow LWC, Arbushites MC, Casey MA, Berger MS, Stein SH, Sledge GW (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26:2999–3005. doi:10.1200/JCO.2007.14.0590

    Article  PubMed  CAS  Google Scholar 

  5. Duckett DR, Cameron MD (2010) Metabolism considerations for kinase inhibitors in cancer treatment. Expert Opin Drug Metab Toxicol 6:1175–1193. doi:10.1517/17425255.2010.506873

    Article  PubMed  CAS  Google Scholar 

  6. GlaxoSmithKline (ed) (2011) Tykerb Prescribing Information

  7. Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan ECY (2010) Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol 78:693–703. doi:10.1124/mol.110.065839

    Article  PubMed  CAS  Google Scholar 

  8. Ju C, Uetrecht JP (2002) Mechanism of idiosyncratic drug reactions: reactive metabolites formation, protein binding and the regulation of the immune system. Curr Drug Metab 3:367–377. doi:10.2174/1389200023337333

    Article  PubMed  CAS  Google Scholar 

  9. Brufsky AM, Mayer M, Rugo HS, Kaufman PA, Tan-Chiu E, Tripathy D, Tudor IC, Wang LI, Brammer MG, Shing M, Yood MU, Yardley DA (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17:4834–4843. doi:10.1158/1078-0432.CCR-10-2962

    Article  PubMed  CAS  Google Scholar 

  10. Leyland-Jones B (2009) Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol 27:5278–5286. doi:10.1200/JCO.2008.19.8481

    Article  PubMed  Google Scholar 

  11. Chang EL, Lo S (2003) Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 8:398–410. doi:10.1634/theoncologist.8-5-398

    Article  PubMed  Google Scholar 

  12. Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, Burri SH, Cobbs CS, Gaspar LE, Kondziolka D, Linskey ME, Loeffler JS, Mehta MP, Mikkelsen T, Olson JJ, Paleologos NA, Patchell RA, Kalkanis SN (2010) The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:103–114. doi:10.1007/s11060-009-0057-4

    Article  PubMed  CAS  Google Scholar 

  13. Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, Harris GJ, Bullitt E, Van Den Abbeele AD, Henson JW, Li X, Gelman R, Burstein HJ, Kasparian E, Kirsch DG, Crawford A, Hochberg F, Winer EP (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26:1993–1999. doi:10.1200/JCO.2007.12.3588

    Article  PubMed  CAS  Google Scholar 

  14. Lin NU, Diéras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roché H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459. doi:10.1158/1078-0432.CCR-08-1080

    Article  PubMed  CAS  Google Scholar 

  15. Pascussi JM, Drocourt L, Fabre JM, Maurel P, Vilarem MJ (2000) Dexamethasone induces pregnane X receptor and retinoid X receptor-α expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol 58:361–372

    PubMed  CAS  Google Scholar 

  16. Micromedex® 2.0 (2011) Thomson Reuters (Healthcare). Accessed Oct 2011

  17. Lexi-Comp (2011) Lexi-Comp Inc. Accessed Oct 2011

  18. Navarro VJ, Senior JR (2006) Drug-related hepatotoxicity. N Engl J Med 354:731–739. doi:10.1056/NEJMra052270

    Article  PubMed  CAS  Google Scholar 

  19. Wu JC, Merlino G, Cveklova K, Mosinger B Jr, Fausto N (1994) Autonomous growth in serum-free medium and production of hepatocellular carcinomas by differentiated hepatocyte lines that overexpress transforming growth factor α. Cancer Res 54:5964–5973

    PubMed  CAS  Google Scholar 

  20. Martignoni M, De Kanter R, Grossi P, Saturno G, Barbaria E, Monshouwer M (2006) An in vivo and in vitro comparison of CYP gene induction in mice using liver slices and quantitative RT-PCR. Toxicol In Vitro 20:125–131. doi:10.1016/j.tiv.2005.06.040

    Article  PubMed  CAS  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  22. Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168

    Article  PubMed  CAS  Google Scholar 

  23. Vermeir M, Annaert P, Mamidi RNVS, Roymans D, Meuldermans W, Mannens G (2005) Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol 1:75–90. doi:10.1517/17425255.1.1.75

    Article  PubMed  CAS  Google Scholar 

  24. Pierce RH, Franklin CC, Campbell JS, Tonge RP, Chen W, Fausto N, Nelson SD, Bruschi SA (2002) Cell culture model for acetaminophen-induced hepatocyte death in vivo. Biochem Pharmacol 64:413–424. doi:10.1016/S0006-2952(02)01180-2

    Article  PubMed  CAS  Google Scholar 

  25. Tomasello G, Bedard PL, de Azambuja E, Lossignol D, Devriendt D, Piccart-Gebhart MJ (2010) Brain metastases in HER2-positive breast cancer: the evolving role of lapatinib. Crit Rev Oncol Hematol 75:110–121. doi:10.1016/j.critrevonc.2009.11.003

    Article  PubMed  Google Scholar 

  26. Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322. doi:10.2174/138920008784220664

    Article  PubMed  CAS  Google Scholar 

  27. Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK (2010) Role of reactive metabolites in drug-induced hepatotoxicity. In: Uetrecht J (ed) Adverse drug reactions, Handbook of experimental pharmacology, 1st edn. Springer-Verlag, Heidelberg, pp 165–194

  28. Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331

    Article  PubMed  CAS  Google Scholar 

  29. Guo GL, Moffit JS, Nicol CJ, Ward JM, Aleksunes LA, Slitt AL, Kliewer SA, Manautou JE, Gonzalez FJ (2004) Enhanced acetaminophen toxicity by activation of the pregnane X receptor. Toxicol Sci 82:374–380. doi:10.1093/toxsci/kfh286

    Article  PubMed  CAS  Google Scholar 

  30. Blower P, De Wit R, Goodin S, Aapro M (2005) Drug-drug interactions in oncology: why are they important and can they be minimized? Crit Rev Oncol Hematol 55:117–142. doi:10.1016/j.critrevonc.2005.03.007

    Article  PubMed  Google Scholar 

  31. Loriot Y, Perlemuter G, Malka D, Penault-Llorca F, Boige V, Deutsch E, Massard C, Armand JP, Soria JC (2008) Drug insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat Clin Pract Oncol 5:268–278. doi:10.1038/ncponc1087

    Article  PubMed  CAS  Google Scholar 

  32. Asnacios A, Naveau S, Perlemuter G (2009) Gastrointestinal toxicities of novel agents in cancer therapy. Eur J Cancer 45:332–342. doi:10.1016/S0959-8049(09)70047-4

    Article  PubMed  Google Scholar 

  33. Demirci U, Buyukberber S, Yılmaz G, Kerem M, Coskun U, Uner A, Baykara M, Pasali H, Benekli M (2011) Hepatotoxicity associated with lapatinib in an experimental rat model. Eur J Cancer 48(2):279–285. doi:10.1016/j.ejca.2011.10.011

    PubMed  Google Scholar 

  34. Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, Whittaker JC, Mooser VE, Preston AJ, Stein SH, Cardon LR (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29:667–673

    Article  PubMed  CAS  Google Scholar 

  35. Andrade RJ, Camargo R, Lucena MI, González-Grande R (2004) Causality assessment in drug-induced hepatotoxicity. Expert Opin Drug Saf 3:329–344. doi:10.1517/14740338.3.4.329

    Article  PubMed  CAS  Google Scholar 

  36. Senior JR (2009) Monitoring for hepatotoxicity: what is the predictive value of liver “function” tests? Clin Pharmacol Ther 85:331–334. doi:10.1038/clpt.2008.262

    Article  PubMed  CAS  Google Scholar 

  37. Lee WM, Senior JR (2005) Recognizing drug-induced liver injury: current problems, possible solutions. Toxicol Pathol 33:155–164. doi:10.1080/01926230590522356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to dedicate this manuscript to Professor Emeritus Sidney Nelson for his mentorship and guidance in this study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, Y.L., Saetaew, M., Chanthawong, S. et al. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat 133, 703–711 (2012). https://doi.org/10.1007/s10549-012-1995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-1995-7

Keywords

Navigation