Skip to main content

Advertisement

Log in

An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

XRCC1 coordinates the activities of DNA polymerase-β and DNA ligase for base excision repair of oxidative DNA damage. In addition, there is some evidence that XRCC1 is a negative regulator of apoptosis. Single nucleotide polymorphisms in XRCC1 have been inconsistently associated with breast cancer risk. We evaluated XRCC1 gene expression in breast cancer cell lines and carcinogen-induced apoptosis in benign breast epithelial cells in relation to XRCC1 genotypes. XRCC1 IVS10+141G>A was associated with increased expression of XRCC1 mRNA and protein, and reduced apoptosis in response to benzo-[a]-pyrene or ionizing radiation, but XRCC1 R399Q was not. These genotypes were also assessed in a clinic-based sample that included 190 breast cancer patients with a family history of breast cancer and 95 controls with no family history of breast cancer. Heterozygous XRCC1 IVS10+141G>A was associated with an increased breast cancer risk (O.R. = 1.7, 95% C.I. 1.016–2.827, P = 0.04) as was homozygous XRCC1 IVS10+141G>A (O.R. = 4.7, 95% C.I. 1.028–21.444, P = 0.03). XRCC1 R399Q was not associated with breast cancer (O.R. 1.00, 95% C.I. 0.61–1.64). The XRCC1 IVS10+141G>A locus is centered in a sequence that is nearly identical to the consensus binding site for the PLAG1 transcription factor. XRCC1 IVS10+141G>A is an intronic polymorphism that is associated with XRCC1 expression, apoptosis and familial breast cancer. It may occur within an intronic regulatory sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chacko P, Rajan B, Joseph T, Mathew BS, Pillai MR (2005) Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to breast cancer. Breast Cancer Res Treat 89:15–21

    Article  PubMed  CAS  Google Scholar 

  2. Smith TR, Miller MS, Lohman K, Lange EM, Case LD, Mohrenweiser HW, Hu JJ (2003) Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett 190:183–190

    Article  PubMed  CAS  Google Scholar 

  3. Smith TR, Levine EA, Perrier ND, Miller MS, Freimanis RI, Lohman K, Case LD, Xu J, Mohrenweiser HW, Hu JJ (2003) DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomark Prev 12:1200–1204

    CAS  Google Scholar 

  4. Sigurdson AJ, Hauptmann M, Chatterjee N, Alexander BH, Doody MM, Rutter JL, Struewing JP (2004) Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes. BMC Cancer 4:9

    Article  PubMed  Google Scholar 

  5. Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, Hall J (2003) Polymorphisms in the DNA repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomark Prev 12:1168–1174

    CAS  Google Scholar 

  6. Duell EJ, Millikan RC, Pittman GS, Winkel S, Lunn RM, Tse CK, Eaton A, Mohrenweiser HW, Newman B, Bell DA (2001) Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomark Prev 10:217–222

    CAS  Google Scholar 

  7. Forsti A, Angelini S, Festa F, Sanyal S, Zhang Z, Grzybowska E, Pamula J, Pekala W, Zientek H, Hemminki K, Kumar R (2004) Single nucleotide polymorphisms in breast cancer. Oncol Rep 11:917–922

    PubMed  Google Scholar 

  8. Deligezer U, Dalay N (2004) Association of the XRCC1 gene polymorphisms with cancer risk in Turkish breast cancer patients. Exp Mol Med 36:572–575

    PubMed  CAS  Google Scholar 

  9. Shen J, Gammon MD, Terry MB, Wang L, Wang Q, Zhang F, Teitelbaum SL, Eng SM, Sagiv SK, Gaudet MM, Neugut AI, Santella RM (2005) Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomark Prev 14:336–342

    Article  CAS  Google Scholar 

  10. Han J, Hankinson SE, De Vivo I, Spiegelman D, Tamimi RM, Mohrenweiser HW, Colditz GA, Hunter DJ (2003) A prospective study of XRCC1 haplotypes and their interaction with plasma carotenoids on breast cancer risk. Cancer Res 63:8536–8541

    PubMed  CAS  Google Scholar 

  11. Figueiredo JC, Knight JA, Briollais L, Andrulis IL, Ozcelik H (2004) Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario site of the Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev 13:583–591

    CAS  Google Scholar 

  12. Shu XO, Cai Q, Gao YT, Wen W, Jin F, Zheng W (2003) A population-based case-control study of the Arg399Gln polymorphism in DNA repair gene XRCC1 and risk of breast cancer. Cancer Epidemiol Biomark Prev 12:1462–1467

    CAS  Google Scholar 

  13. Hu JJ, Smith TR, Miller MS, Lohman K, Case LD (2002) Genetic regulation of ionizing radiation sensitivity and breast cancer risk. Environ Mol Mutagen 39:208–215

    Article  PubMed  CAS  Google Scholar 

  14. Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM III (2000) Functional characterization of Ape1 variants identified in the human population. Nucl Acids Res 28:3871–3879

    Article  PubMed  CAS  Google Scholar 

  15. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551–555

    Article  PubMed  CAS  Google Scholar 

  16. Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S (2005) Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 54:1171–1178

    Article  PubMed  CAS  Google Scholar 

  17. Sano M, Kuroi N, Nakayama T, Sato N, Izumi Y, Soma M, Kokubun S (2005) Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am J Hypertens 18:403–408

    Article  PubMed  CAS  Google Scholar 

  18. Mototani H, Mabuchi A, Saito S, Fujioka M, Iida A, Takatori Y, Kotani A, Kubo T, Nakamura K, Sekine A, Murakami Y, Tsunoda T, Notoya K, Nakamura Y, Ikegawa S (2005) A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum Mol Genet 14:1009–1017

    Article  PubMed  CAS  Google Scholar 

  19. Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ, Johnson-Pais T, Hamlington J, Dyer TD, Arya R, Abboud H, Goring HH, Duggirala R, Blangero J, Konrad RJ, Stern MP (2005) A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-Acetyl-beta-d glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54:1214–1221

    Article  PubMed  CAS  Google Scholar 

  20. Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, Akamizu T (2005) Multiple SNPs in Intron 7 of Thyrotropin Receptor are associated with Graves’ Disease. J Clin Endocrinol Metab 90:2898–2903

    Article  PubMed  CAS  Google Scholar 

  21. Liu PY, Lu Y, Long JR, Xu FH, Shen H, Recker RR, Deng HW (2004) Common variants at the PCOL2 and Sp1 binding sites of the COL1A1 gene and their interactive effect influence bone mineral density in Caucasians. J Med Genet 41:752–757

    Article  PubMed  CAS  Google Scholar 

  22. Chappell S, Guetta-Baranes T, Batowski K, Yiannakis E, Morgan K, O’Connor C, MacNee W, Kalsheker N (2004) Haplotypes of the alpha-1 antitrypsin gene in healthy controls and Z deficiency patients. Hum Mutat 24:535–536

    Article  PubMed  CAS  Google Scholar 

  23. Freedman ML, Penney KL, Stram DO, Le Marchand L, Hirschhorn JN, Kolonel LN, Altshuler D, Henderson BE, Haiman CA (2004) Common variation in BRCA2 and breast cancer risk: a haplotype-based analysis in the Multiethnic Cohort. Hum Mol Genet 13:2431–2441

    Article  PubMed  CAS  Google Scholar 

  24. Martone R, Euskirchen G, Berone P, Hartman S, Royce TE, Luscombe NM, Rinn JL, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M (2003) Distribution of NK-κB-binding sites across human chromosome 22. Proc Natl Acad Sci USA 100:12247–12252

    Article  PubMed  CAS  Google Scholar 

  25. Euskirchen G, Royce TE, Bertone P, Martone R, Rinn JL, Nelson FK, Sayward F, Luscombe NM, Miller P, Gerstein M, Weissman S, Snyder M (2004) CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 24:3804–3814

    Article  PubMed  CAS  Google Scholar 

  26. Piggee CA, Muth J, Carrilho E, Karger BL (1997) Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J Chromatogr A 781:367–375

    Article  PubMed  CAS  Google Scholar 

  27. Gazdar AF, Kurvari V, Virmani A, Gollahon L, Sakaguchi M, Westerfield M, Kodagoda D, Stasny V, Cunningham HT, Wistuba II, Tomlinson G, Tonk V, Ashfaq R, Leitch AM, Minna JD, Shay JW (1998) Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer 78:766–774

    Article  PubMed  CAS  Google Scholar 

  28. Scion Corporation: Scion Image, http://www.scioncorp.com/frames/fr_scion_products.htm, 2005

  29. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mitagenicity test. Mutat Res 31:347–364

    PubMed  CAS  Google Scholar 

  30. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  31. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186

    PubMed  CAS  Google Scholar 

  32. Euhus DM, Berry DM, Parmigianni G, Iverson E, Frawley W, Aguilar O, Gubdjartsson DF, O’neill S: CancerGene, version 3.3b, UT Southwestern Medical Center, 2005, http://www4.utsouthwestern.edu/breasthealth/cagene

  33. Parmigiani G, Berry DA, Aquilar O (1998) Determining carrier probabilities for breast cancer susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62:145–158

    Article  PubMed  CAS  Google Scholar 

  34. Euhus DM, Smith KC, Robinson L, Stukey FA, Olopade OI, Cummings S, Garber JE, Chittenden A, Mills GB, Reiger P, Esserman L, Crawford B, Hughes KS, Roche C, Ganz P, Seldon J, Fabian CJ, Klemp J, Tomlinson G (2002) Pretest Prediction of BRCA1 or BRCA2 Mutation by Risk Counselors and the Computer Program BRCAPRO. J Natl Cancer Inst 94:844–851

    PubMed  CAS  Google Scholar 

  35. R Development Core Team: R: A language, environment for statistical computing, rw1020, R Foundation for Statistical Computing, 2005, http://www.R-project.org

  36. Warnes GR: The R genetics package, 1.1.3, Pfizer, 2005, http://r-genetics.sf.net/

  37. Strom TM, Wienker TF: DeFinetti, 2005, http://ihg.gsf.de/cgi-bin/hw/hwa1.pl

  38. Veld CW, Jansen J, Zdzienicka MZ, Vrieling H, van Zeeland AA (1998) Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrcc1-deficient derivative EM-C11. Mutat Res 398:83–92

    PubMed  Google Scholar 

  39. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  40. Vidal AE, Boiteux S, Hickson ID, Radicella JP (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J 20:6530–6539

    Article  PubMed  CAS  Google Scholar 

  41. Kaina B, Ochs K, Grosch S, Fritz G, Lips J, Tomicic M, Dunkern T, Christmann M (2001) BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis. Prog Nucl Acid Res Mol Biol 68:41–54

    Article  CAS  Google Scholar 

  42. Fujimura M, Morita-Fujimura Y, Noshita N, Yoshimoto T, Chan PH (2000) Reduction of the DNA base excision repair protein, XRCC1, may contribute to DNA fragmentation after cold injury-induced brain trauma in mice. Brain Res 869:105–111

    Article  PubMed  CAS  Google Scholar 

  43. Genomatrix, MatInspector http://www.genomatix.de/, 2005

  44. Voz ML, Agten NS, Van de Ven WJ, Kas K (2000) PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res 60:106–113

    PubMed  CAS  Google Scholar 

  45. Voz ML, Mathys J, Hensen K, Pendeville H, Van Valckenborgh I, Van Huffel C, Chavez M, Van Damme B, De Moor B, Moreau Y, Van De Ven WJ (2004) Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene 23:179–191

    Article  PubMed  CAS  Google Scholar 

  46. Ensembl, http://www.ensembl.org/, 2005

  47. Inoue M, Shen GP, Chaudhry MA, Galick H, Blaisdell JO, Wallace SS (2004) Expression of the oxidative base excision repair enzymes is not induced in TK6 human lymphoblastoid cells after low doses of ionizing radiation. Radiat Res 161:409–417

    Article  PubMed  CAS  Google Scholar 

  48. Yanagisawa T, Urade M, Yamamoto Y, Furuyama J (1998) Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol 34:524–528

    Article  PubMed  CAS  Google Scholar 

  49. Shung B, Miyakoshi J, Takebe H (1994) X-ray-induced transcriptional activation of c-myc and XRCC1 genes in ataxia telangiectasia cells. Mutat Res 307:43–51

    PubMed  CAS  Google Scholar 

  50. Yacoub A, McKinstry R, Hinman D, Chung T, Dent P, Hagan MP (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452

    Article  PubMed  CAS  Google Scholar 

  51. Murakami T, Fujimoto M, Ohtsuki M, Nakagawa H (2001) Expression profiling of cancer-related genes in human keratinocytes following non-lethal ultraviolet B irradiation. J Dermatol Sci 27:121–129

    Article  PubMed  CAS  Google Scholar 

  52. Yoo H, Li L, Sacks PG, Thompson LH, Becker FF, Chan JY (1992) Alterations in expression and structure of the DNA repair gene XRCC1. Biochem Biophys Res Commun 186:900–910

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Euhus.

Additional information

Supported by: Mary Kay Ash Charitable Foundation and Charles Solomon Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, D., Tomlinson, G., Lewis, C.M. et al. An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer. Breast Cancer Res Treat 99, 257–265 (2006). https://doi.org/10.1007/s10549-006-9210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9210-3

Keywords

Navigation