Skip to main content

Advertisement

Log in

Characterization of an in vitro cell culture bioreactor system to evaluate anti-neoplastic drug regimens

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

A dynamic 3-dimensional tissue culture system has been developed that will allow for control of gemcitabine exposure to mimic concentration-time profiles measured from biologic samples. Gemcitabine was infused into a central reservoir. Media is mixed and delivered through hollow fiber capillaries, where it diffuses into the extracapillary space containing anchorage-dependent MDA-231 cells. To test for control of gemcitabine concentration-time profiles, drug was first infused through bioreactors without cells, and gemcitabine concentrations were measured with HPLC. Concentrations could be controlled to simulate 30-min and 2.5 h infusions, and were similar in both the lumen and extracapillary space. MDA-231 cells were then seeded into control (n = 4) and gemcitabine treatment (n = 4) groups, and maintained in culture for 2 weeks. Gemcitabine (5.3 mg) was infused over 30 min to the treatment group, and blank media to the control group. Accuracy of measured gemcitabine maximum concentration (C max) was 83.4%, and area under the curve (AUC), 106.2%, relative to pre-experimental theoretical values. With cells present, gemcitabine AUC in the extracapillary space was 32% of the value in the lumen. For the control group, 21.2 million cells (94.3% viable) were recovered, and for the gemcitabine-treated group, 16.8 million cells (87.1 % viable). Flow cytometry showed that 13.3 % of cells in the control group were in S-phase and 34.3 % in the gemcitabine-treated group were in S-phase (p = 0.003). In conclusion, gemcitabine concentration-time profiles could be accurately controlled through dosage, infusion rate, and pump flow rate, and cells could be recovered afterward to evaluate drug treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tubergen DG, Stewart CF, Pratt CB, Zamboni WC, Winick N, Santana VM, Dryer ZA, Kurtzberg J, Bell B, Grier H, Vietti TJ, 1996. Phase I trial and pharmacokinetic (PK) and pharmacodynamics (PD) study of topotecan using a five-day course in children with refractory solid tumors: a pediatric oncology group study J Pediatr Hematol Oncol 18:352–361

    Article  CAS  PubMed  Google Scholar 

  2. Stewart CF, Iacono LC, Chintagumpala M, Kellie SJ, Ashley D, Zamboni WC, Kirstein MN, Fouladi M, Seele LG, Wallace D, Houghton PJ, Gajjar A, 2004. Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor J Clin Oncol 22:3357–3365

    Article  CAS  PubMed  Google Scholar 

  3. Markman M, Rose PG, Jones E, Horowitz IR, Kennedy A, Webster K, Belinson J, Fusco N, Fluellen L, Kulp B, Peterson G, McGuire WP, 1998. Ninety-six-hour infusional paclitaxel as salvage therapy of ovarian cancer patients previously failing treatment with 3-hour or 24-hour paclitaxel infusion regimens J Clin Oncol 16:1849–1851

    Article  CAS  PubMed  Google Scholar 

  4. Brenner B, Ilson DH, Minsky BD, Bains MS, Tong W, Gonen M, Kelsen DP, 2004. Phase I trial of combined-modality therapy for localized esophageal cancer: escalating doses of continuous-infusion paclitaxel with cisplatin and concurrent radiation therapy J Clin Oncol 22:45–52

    Article  CAS  PubMed  Google Scholar 

  5. de Gramont A, Bosset JF, Milan C, Rougier P, Bouche O, Etienne PL, Morvan F, Louvet C, Guillot T, Francois E, Bedenne L, 1997. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study J Clin Oncol 15:808–815

    Article  PubMed  Google Scholar 

  6. Kellie SJ, Koopmans P, Earl J, Nath C, Roebuck D, Uges DR, De Graaf SS, 2004. Increasing the dosage of vincristine: a clinical and pharmacokinetic study of continuous-infusion vincristine in children with central nervous system tumors Cancer 100:2637–2643

    Article  CAS  PubMed  Google Scholar 

  7. Clark PI, Slevin ML, Joel SP, Osborne RJ, Talbot DI, Johnson PW, Reznek R, Masud T, Gregory W, Wrigley PF, 1994. A randomized trial of two etoposide schedules in small-cell lung cancer: the influence of pharmacokinetics on efficacy and toxicity J Clin Oncol 12:1427–1435

    Article  CAS  PubMed  Google Scholar 

  8. Suggitt M, Bibby MC, 2005. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches Clin Cancer Res 11:971–981

    CAS  PubMed  Google Scholar 

  9. Chou TC, Motzer RJ, Tong Y, Bosl GJ, 1994. Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design J Natl Cancer Inst 86:1517–1524

    Article  CAS  PubMed  Google Scholar 

  10. Chou TC, Talalay P, 1984. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  11. Suggitt M, Swaine DJ, Pettit GR, Bibby MC, 2004. Characterization of the hollow fiber assay for the determination of microtubule disruption in vivo Clin Cancer Res 10: 6677–6685

    Article  CAS  PubMed  Google Scholar 

  12. Kirstein MN, Houghton PJ, Cheshire PJ, Richmond LB, Smith AK, Hanna SK, Stewart CF, 2001. Relation between 9-aminocamptothecin systemic exposure and tumor response in human solid tumor xenografts Clin Cancer Res 7:358–366

    CAS  PubMed  Google Scholar 

  13. Stanness KA, Westrum LE, Fornaciari E, Mascagni P, Nelson JA, Stenglein SG, Myers T, Janigro D, 1997. Morphological and functional characterization of an in vitro blood–brain barrier model Brain Res 771:329–342

    Article  CAS  PubMed  Google Scholar 

  14. Drusano GL, Bilello PA, Symonds WT, Stein DS, McDowell J, Bye A, Bilello JA, 2002. Pharmacodynamics of abacavir in an in vitro hollow-fiber model system Antimicrob Agents Chemother 46:464–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bilello JA, Bauer G, Dudley MN, Cole GA, Drusano GL, 1994. Effect of 2′,3′-didehydro-3′-deoxythymidine in an in vitro hollow-fiber pharmacodynamic model system correlates with results of dose-ranging clinical studies Antimicrob Agents Chemother 38:1386–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnan P, Fu Q, Lam W, Liou JY, Dutschman G, Cheng YC, 2002. Phosphorylation of pyrimidine deoxynucleoside analog diphosphates: selective phosphorylation of L-nucleoside analog diphosphates by 3-phosphoglycerate kinase J Biol Chem 277:5453–5459

    Article  CAS  PubMed  Google Scholar 

  17. Bouffard DY, Laliberte J, Momparler RL, 1993. Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase Biochem Pharmacol 45:1857–1861

    Article  CAS  PubMed  Google Scholar 

  18. Liou JY, Dutschman GE, Lam W, Jiang Z, Cheng YC, 2002. Characterization of human UMP/CMP kinase and its phosphorylation of D- and L-form deoxycytidine analogue monophosphates Cancer Res 62:1624–1631

    CAS  PubMed  Google Scholar 

  19. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W, 1990. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine Mol Pharmacol 38:567–572

    CAS  PubMed  Google Scholar 

  20. Ross DD. Cuddy DP, 1994. Molecular effects of 2′,2′-difluorodeoxycytidine (Gemcitabine) on DNA replication in intact HL-60 cells Biochem Pharmacol 48:1619–1630

    Article  PubMed  Google Scholar 

  21. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W, 1991. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis Cancer Res 51:6110–6117

    CAS  PubMed  Google Scholar 

  22. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN, et al. 1991. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine J Clin Oncol 9:491–498

    Article  CAS  PubMed  Google Scholar 

  23. Venook AP, Egorin MJ, Rosner GL, Hollis D, Mani S, Hawkins M, Byrd J, Hohl R, Budman D, Meropol NJ, Ratain MJ, 2000. Phase I and pharmacokinetic trial of gemcitabine in patients with hepatic or renal dysfunction: cancer and Leukemia Group B 9565 J Clin Oncol 18:2780–2787

    Article  CAS  PubMed  Google Scholar 

  24. Dumez H, Louwerens M, Pawinsky A, Planting AS, de Jonge MJ, Van Oosterom AT, Highley M, Guetens G, Mantel M, de Boeck G, de Bruijn E, Verweij J, 2002. The impact of drug administration sequence and pharmacokinetic interaction in a phase I study of the combination of docetaxel and gemcitabine in patients with advanced solid tumors Anticancer Drugs 13:583–593

    Article  CAS  PubMed  Google Scholar 

  25. Kroep JR, Giaccone G, Voorn DA, Smit EF, Beijnen JH, Rosing H, van Moorsel CJ, van Groeningen CJ, Postmus PE, Pinedo HM, Peters GJ, 1999. Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer J Clin Oncol 17:2190–2197

    Article  CAS  PubMed  Google Scholar 

  26. Tempero M, Plunkett W, Ruiz Van Haperen V, Hainsworth J, Hochster H, Lenzi R, Abbruzzese J, 2003. Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma J Clin Oncol 21:3402–3408

    Article  CAS  PubMed  Google Scholar 

  27. D’Argenio DZ, AADAPT II User’s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource Los Angeles, 1997

  28. Gibaldi M, Koup JR, 1981. Pharmacokinetic concepts – drug binding, apparent volume of distribution and clearance Eur J Clin Pharmacol 20:299–305

    Article  CAS  PubMed  Google Scholar 

  29. Gooch JL, Van Den Berg CL, Yee D, 1999. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death–proliferative and anti-apoptotic effects Breast Cancer Res Treat 56:1–10

    Article  CAS  PubMed  Google Scholar 

  30. Marbach EP. Weil MH, 1967. Rapid enzymatic measurement of blood lactate and pyruvate. Use and significance of metaphosphoric acid as a common precipitant Clin Chem 13:314–325

    PubMed  Google Scholar 

  31. Company EL, Package Insert

  32. Rew DA, Wilson GD, 2000. Cell production rates in human tissues and tumours and their significance. Part II: clinical data Eur J Surg Oncol 26:405–417

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto D, Tanaka K, Nakai K, Baden T, Inoue K, Yamamoto C, Takemoto H, Kamato K, Hirata H, Morikawa S, Inubushi T, Hioki K, 2002. Synergistic effects induced by cycloprodigiosin hydrochloride and epirubicin on human breast cancer cells Breast Cancer Res Treat 72:1–10

    Article  CAS  PubMed  Google Scholar 

  34. Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G, 1999. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines Eur J Cancer 35:796–807

    Article  CAS  PubMed  Google Scholar 

  35. Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P, 2001. Cell cycle effects of gemcitabine Int J Cancer 93:401–408

    Article  CAS  PubMed  Google Scholar 

  36. Ng SSW, Tsao MS, Chow S, Hedley DW, 2000. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells Cancer Res 60:5451–5455

    CAS  PubMed  Google Scholar 

  37. Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F, 2003. Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro Int J Radiat Oncol Biol Phys 57:1075–1083

    Article  CAS  PubMed  Google Scholar 

  38. Perabo FG, Lindner H, Schmidt D, Huebner D, Blatter J, Fimmers R, Muller SC, Albers P, 2003. Preclinical evaluation of gemcitabine/paclitaxel-interactions in human bladder cancer lines Anticancer Res 23:4805–4814

    CAS  PubMed  Google Scholar 

  39. Ali S, El-Rayes BF, Aranha O, Sarkar FH, Philip PA, 2005. Sequence dependent potentiation of gemcitabine by flavopiridol in human breast cancer cells Breast Cancer Res Treat 90:25–31

    Article  CAS  PubMed  Google Scholar 

  40. Chandler NM, Canete JJ, Callery MP, 2004. Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine J Gastrointest Surg 8:1072–1078

    Article  PubMed  Google Scholar 

  41. Serrano MJ, Sanchez-Rovira P, Algarra I, Jaen A, Lozano A, Gaforio JJ, 2002. Evaluation of a gemcitabine-doxorubicin-paclitaxel combination schedule through flow cytometry assessment of apoptosis extent induced in human breast cancer cell lines Jpn J Cancer Res 93:559–566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Cancer Center Translational Breast Cancer Award to M.N.K.

Author information

Authors and Affiliations

Authors

Additional information

Address for offprints and correspondence: Mark N. Kirstein, Department of Experimental and Clinical Pharmacology, College of Pharmacy and Comprehensive Cancer Center, University of Minnesota, 308 Harvard St SE, Minneapolis, MN 55455, USA; Tel.: +1-612-624-5689; Fax: +1-612-625-3927

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirstein, M.N., Brundage, R.C., Elmquist, W.F. et al. Characterization of an in vitro cell culture bioreactor system to evaluate anti-neoplastic drug regimens. Breast Cancer Res Treat 96, 217–225 (2006). https://doi.org/10.1007/s10549-005-9004-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-9004-z

Keywords:

Navigation