Skip to main content
Log in

Auditory Detection of Motion Velocity in Humans: a Magnetoencephalographic Study

  • Original Article
  • Published:
Brain Topography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

No Heading

Summary:

To investigate the cerebral mechanisms of auditory detection of motion velocity in the human brain, neuromagnetic fields elicited by six moving sounds and one stationary sound were investigated with a whole-cortex magnetoencephalography (MEG) system. The stationary sound evoked only one clear response at a latency of 109±6 ms (first response, or M100), but the six moving sounds evoked two clear responses: an earlier response at a latency of 116±7 ms (M100) and a later response at a latency ranging from 180 to 760 ms (magnetic motion response, or MM). The latency and amplitude of the MM were inversely related to the velocity of the moving sounds (p<0.02). The magnetic source of MM was related to the velocity of the moving sounds (p<0.05). A dynamic neuromagnetic response, MM, was elicited by the moving sounds, which likely encoded the neural processing of auditory detection of motion velocity. A specific neural network that processes the motion velocity in the human brain probably includes the bilateral superior temporal cortices and the brainstem. The left posterior and lateral part of the auditory cortex may play a pivotal role in the auditory detection of motion velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Doan, D.E. and Sounders, J.C. Sensitivity to simulated directional sound motion in the rat primary auditory cortex. J. Neurophysiol., 1999, 81:2075–2087.

    CAS  PubMed  Google Scholar 

  • Griffiths, T.D., Bates, D., Rees, A., Witton, C., Gholkar, A. and Green, G.G. Sound movement detection deficit due to a brainstem lesion. J. Neurol. Neurosurg. Psychiatry, 1997, 62:522–526.

    CAS  PubMed  Google Scholar 

  • Griffiths, T.D. and Green, G.G. Cortical activation during perception of a rotating wide-field acoustic stimulus. Neuroimage, 1999, 10:84–90.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T.D., Green, G.G., Rees, A. and Rees, G. Human brain areas involved in the analysis of auditory movement. Hum. Brain Mapp., 2000, 9:72–80.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T.D., Rees, G., Rees, A., Green, G.G., Witton, C., Rowe, D., Buchel, C., Turner, R. and Frackowiak, R.S. Right parietal cortex is involved in the perception of sound movement in humans. Nat. Neurosci., 1998, 1:74–79.

    Article  CAS  PubMed  Google Scholar 

  • Hari, R., Kaila, K., Katila, T., Tuomisto, T. and Varpula, T. lnterstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephatogr. Clin. Neurophysiol., 1982, 54:561–569.

    Article  CAS  Google Scholar 

  • Johnsrude, I.S., Penhune, V.B. and Zatorre, R.J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 2000, 123 (Pt 1):155–163.

    Article  PubMed  Google Scholar 

  • Kaiser, J., Lutzenberger, W., Preissl, H., Ackermarm, H. and Birbaumer, N. Right-hemisphere dominance for the processing of sound-source lateralization. J. Neurosci., 2000, 20:6631–6639.

    CAS  PubMed  Google Scholar 

  • Lutfi, R.A. and Wang, W. Correlational analysis of acoustic cues for the discrimination of auditory motion. J. Acoust. Soc. Am., 1999, 106:919–928.

    Article  CAS  PubMed  Google Scholar 

  • Makela, J.P. and McEvoy, L. Auditory evoked fields to illusory sound source movements. Exp. Brain Res., 1996, 110:446–454.

    CAS  PubMed  Google Scholar 

  • Marshall, J.C. Auditory neglect and right parietal cortex. Brain, 2001, 124:645–646.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 1971, 9:157–200.

    Article  PubMed  Google Scholar 

  • Perrott, D.R. and Marlborough, K. Minimum audible movement angle: marking the end points of the path traveled by a moving sound source. J. Acoust. Soc. Am., 1989, 85:1773–1775.

    CAS  PubMed  Google Scholar 

  • Perrott, D.R. and Musicant, A.D. Minimum auditory movement angle: binaural localization of moving sound sources. J. Acoust. Soc. Am., 1977, 62:1463–1466.

    CAS  PubMed  Google Scholar 

  • Perrott, D.R. and Tucker, J. Minimum audible movement angle as a function of signal frequency and the velocity of the source. J. Acoust. Soc. Am., 1988, 83:1522–1527.

    CAS  PubMed  Google Scholar 

  • Poirier, P., Jiang, H., Lepore, F. and Guillemot, J.P. Positional, directional and speed selectivities in the primary auditory cortex of the cat. Hear. Res., 1997, 113:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, H. and Polyakov, A. Electrophysiological evidence of a sound localizing binaural subsystem in the human auditory brainstem. J. Basic Clin. Physiol. Pharmacol., 1996, 7:235–244.

    CAS  PubMed  Google Scholar 

  • Pratt, H. and Polyakov, A. Evoked potentials in sound localization: timing of activity along the auditory pathway. Electroencephalogr. Clin. Neurophysiol. Suppl., 1999, 50:235–242.

    CAS  PubMed  Google Scholar 

  • Ungan, P., Erar, H., Ozturk, N. and Ozmen, B. Human long-latency potentials evoked by monaural interruptions of a binaural click train: connection to sound lateralization based on interaural intensity differences. Audiology, 1992, 31:318–333.

    CAS  PubMed  Google Scholar 

  • Ungan, P., Yagcioglu, S. and Goksoy, C. Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin. Neurophysiol., 2001, 112:485–498.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, I.F., Rose, S.A., McCarton, C.M., Kurtzberg, D. and Vaughan, H.G., Jr. Relations between infant neurobehavioral performance and cognitive outcome in very low birth weight preterm infants. J. Dev. Behav. Pediatr., 1995, 16:309–317.

    CAS  PubMed  Google Scholar 

  • Warren, J.D., Zielinski, B.A., Green, G.G., Rauschecker, J.P. and Griffiths, T.D. Perception of sound-source motion by the human brain. Neuron, 2002, 34:139–148.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, J., Chuang, S., Wilson, D., Otsubo, H., Pang, E., Holowka, S., Sharma, R., Ochi, A. and Chitoku, S. Sound motion evoked magnetic fields. Clin. Neurophysiol., 2002, 113:1–9.

    Article  PubMed  Google Scholar 

  • Xiang, J., Hoshiyama, M., Koyama, S., Kaneoke, Y., Suzuki, H., Watanabe, S., Naka, D. and Kakigi, R. Somatosensory evoked magnetic fields following passive finger movement. Brain Res. Cogn. Brain Res., 1997a, 6:73–82.

    Article  CAS  Google Scholar 

  • Xiang, J., Kakigi, R., Hoshiyama, M., Kaneoke, Y., Naka, D., Takeshima, Y. and Koyama, S. Somatosensory evoked magnetic fields and potentials following passive toe movement in humans. Electroencephalogr. Clin. Neurophysiol., 1997b, 104:393–401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xiang.

Additional information

We thank Dr. Paul Babyn for his help and suggestions in these experiments. This paper was prepared with the assistance of Prof. Sharon Nancekivell, medical editor, Guelph, Ontario, Canada. This study was partially supported by the Savoy Foundation (Research Grant 77227).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, J., Daniel, S., Ishii, R. et al. Auditory Detection of Motion Velocity in Humans: a Magnetoencephalographic Study. Brain Topogr 17, 139–149 (2005). https://doi.org/10.1007/s10548-005-4447-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-005-4447-4

Key words:

Navigation