Skip to main content
Log in

Observational Investigation of the Statistical Properties of Surface-Layer Turbulence in a Suburban Area of São Paulo, Brazil: Objective Analysis of Scaling-Parameter Accuracy and Uncertainties

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

A Correction to this article was published on 22 September 2022

This article has been updated

Abstract

Statistical properties of turbulence, specifically variances of velocity components, temperature, water vapor, and carbon dioxide densities, are observationally characterized using turbulence measurements carried out between 2009 and 2017, at 25.4 m above surface in a suburban area in the metropolitan region of São Paulo (MRSP), Brazil. An objective analysis indicated that the best method to evaluate the zero-plane displacement (d), among five morphometric and anemometric methods is the temperature variance method. A new procedure based on the convergence of these methods is proposed to estimate the accuracy of the aerodynamic parameters. Normalized standard deviation of wind components and scalar properties are described by similarity functions based on Monin–Obukhov similarity theory. Uncertainties in d and Obukhov length are propagated to similarity functions derived for the MRSP and indicated uncertainties of up to 12% (22%) for wind components, 15% (23%) for temperature, 6% (23%) for water vapor and 11% (23%) for carbon dioxide densities during stable (unstable) conditions. By hypothesis testing it was demonstrated that the coefficients of normalized standard deviations of wind components for neutral stability conditions found at MRSP can be considered statistically equal to Roth’s urban averages (Q J R Meteorol Soc126:941–990, 2000), revealing the universal character of these functions. This agreement, added to other evidence, indicates that measurements used in the present study were performed in the inertial sublayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© CNES (2018) Distribution Airbus DS). Wind direction sectors are indicated by: N (337.5°–22.5°), NE (22.5°–67.5°), E (67.5°–112.5°), SE (112.5°–157.5°), S (157.5°–202.5°), SW (202.5°–247.5°), W (247.5°–292.5°), NW (292.5°–337.5°)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Al-Jiboori MH, Xu Y, Qian Y (2002) Local similarity relationships in the urban boundary layer. Bound-Layer Meteorol 102:63–82

    Article  Google Scholar 

  • Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Clim 10:216–240

    Article  Google Scholar 

  • Counihan J (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements. Atmos Environ 5:637–642

    Article  Google Scholar 

  • Enriquez AG, Friehe CA (1997) Bulk parameterization of momentum, heat, and moisture fluxes over a coastal upwelling area. J Geophys Res 102:5781–5798

    Article  Google Scholar 

  • Falabino S, Trini Castelli S (2017) Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer. Meteorol Atmos Phys 129:83–98

    Article  Google Scholar 

  • Ferreira MJ, Oliveira AP, Soares J, Codato G, Bárbaro EW, Escobedo JF (2012) Radiation balance at the surface in the city of São Paulo city, Brazil: diurnal and seasonal variations. Theor Appl Climatol 107:229–246

    Article  Google Scholar 

  • Ferreira MJ, Oliveira AP, Soares J (2013) Diurnal variation in stored energy flux in São Paulo city, Brazil. Urban Clim 5:36–51

    Article  Google Scholar 

  • Ferreira DG, Diniz CB, Assis ES (2021) Methods to calculate urban surface parameters and their relation to the LCZ classification. Urban Clim 36:100788

    Article  Google Scholar 

  • Finnigan JJ (2004) A re-evaluation of long–term flux measurement techniques. Part II: Coordinate Systems. Bound-Layer Meteorol 113:1–41

    Article  Google Scholar 

  • Foken T (2006) 50 Years of the Monin–Obukhov similarity theory. Bound-Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Netherlands, pp 181–208

    Google Scholar 

  • Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric for Meteorol 78:83–105

    Article  Google Scholar 

  • Fortuniak K, Pawlak W, Siedlecki M (2013) Integral turbulence statistic over a Central European City Centre. Bound-Layer Meteorol 146:257–276

    Article  Google Scholar 

  • GeoSampa (2021) Mapa Digital da Cidade de São Paulo – Digital Map of São Paulo City. http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx. Accessed May 2022

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Bound-Layer Meteorol 89:1–24

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Hanna SR, Chang JC (1992) Boundary layer parameterizations for applied dispersion modelling over urban areas. Bound-Layer Meteorol 58:229–259

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Bound-Layer Meteorol 78:215–246

    Article  Google Scholar 

  • Horst TW, Vogt R, Oncley S (2016) Measurements of flow distortion within the IRGASON integrated sonic anemometer and CO2/H2O gas analyzer. Bound-Layer Meteorol 160:1–15

    Article  Google Scholar 

  • IBGE (2017) Brazilian Institute of Geography and Statistics. https://agenciadenoticias.ibge.gov.br/en/agencia-press-room/2185-news-agency/releases-en/14926-new-study-shows-current-state-of-brazilian-urbanization. Accessed May 2022

  • IBGE (2018) Brazilian Institute of Geography and Statistics. https://agenciadenoticias.ibge.gov.br/en/agencia-press-room/2185-news-agency/releases-en/22385-ibge-releases-population-estimates-of-municipalities-for-2018. Accessed May2022

  • Järvi L, Rannik Ü, Kokkonen TV, Kurppa M, Karppinen A, Kouznetsov RD, Rantala P, Vesala T, Wood CR (2018) Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmos Meas Tech 11:5421–5438

    Article  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Bound-Layer Meteorol 148:357–377

    Article  Google Scholar 

  • Kent CW, Grimmond S, Barlow J, Gatey D, Kotthaus S, Lindberg F, Halios CH (2017a) Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas. Boundary-Layer Meteorol 164:183–213

    Article  Google Scholar 

  • Kent CW, Grimmond S, Gatey D (2017b) Aerodynamic roughness parameters in cities: inclusion of vegetation. J Wind Eng Ind Aerodyn 169:168–176

    Article  Google Scholar 

  • Kent CW, Lee K, Ward HC, Hong J, Hong J, Gatey D, Grimmond S (2018) Aerodynamic roughness variation with vegetation: analysis in a suburban neighbourhood and a city park. Urban Ecosyst 21:227–243

    Google Scholar 

  • Kent CW, Grimmond S, Gatey D, Hirano K (2019) Urban morphology parameters from global digital elevation models: Implications for aerodynamic roughness and for wind-speed estimation. Rem Sens Environ 221:316–339

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8:3695–3713

    Article  Google Scholar 

  • Kutzbach JE (1961) Investigations of the modification of wind profiles by artificially controlled surface roughness. M.S. Thesis, University of Wisconsin-Madison, Wisconsin, USA

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ, 32:1857–1864. https://doi.org/10.1016/S1352-2310(97)00403-2

  • Mahrt L (1998) Flux Sampling Errors for Aircraft and Towers. J Atmos Ocean Technol 15:416–429

    Article  Google Scholar 

  • Martano P (2000) Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J Appl Meteorol 39:708–715

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric for Meteorol 169:122–135

    Article  Google Scholar 

  • Montgomery DC, Runger GC (2003) Applied Statistics and Probability for Engineers. Wiley, New York, USA

    Google Scholar 

  • Moonen P, Defraeye T, Dorer V, Blocken B, Carmelietj J (2012) Urban physics: effect of the microclimate on comfort, health and energy demand. Front Archit Res 1:197–228

    Article  Google Scholar 

  • Oliveira AP, Bornstein RD, Soares J (2003) Annual and diurnal wind patterns in the city of São Paulo. Water Air Soil Pollut 3:3–15

    Article  Google Scholar 

  • Oliveira CG, Paradella WR (2009) Evaluating the quality of the Digital Elevation Models produced from ASTER stereoscopy for topographic mapping in the Brazilian Amazon Region. An Acad Bras Ciênc 81:217–225

    Article  Google Scholar 

  • Oliveira AP, Marques Filho EP, Ferreira MJ, Codato G, Ribeiro FND, Landulfo E, Moreira GA, Pereira MMR, Mlakar P, Božnar MZ, Assis ES, Ferreira DG, Cassol M, Escobedo JF, Dal Pai A, França JRA, Quintão DA, Rabelo FD, Souza LAT, Silva WP, Domingues LM, Sánchez MP, Silveira LC, Vito JV (2020) Assessing urban effects on the climate of metropolitan regions of Brazil – Preliminary results of the MCITY Project. Exploratory Environ Sci Res 1:38–77

    Article  Google Scholar 

  • Perez MPG, Silva Dias MAF (2017) Long-term study of the occurrence and time of passage of sea breeze in São Paulo, 1960–2009. Int J Climatol 37:1210–1220

    Article  Google Scholar 

  • Pahlow M, Parlange MB, Porté-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound-Layer Meteorol 99:225–248

    Article  Google Scholar 

  • Quan L, Hu F (2009) Relationship between turbulent flux and variance in the urban canopy. Meteorol Atmos Phys 104:29–36

    Article  Google Scholar 

  • Ramamurthy P, Pardyjak ER (2015) Turbulent transport of carbon dioxide over a highly vegetated suburban neighbourhood. Bound-Layer Meteorol 157:461–479

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 59–83

    Chapter  Google Scholar 

  • Ribeiro FND, Oliveira AP, Soares J, Miranda RM, Barlage M, Chen F (2018) Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmos Res 214:174–188

    Article  Google Scholar 

  • Rotach MW (1994) Determination of the zero-plane displacement in an urban environment. Bound-Layer Meteorol 67:187–193

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  • Salesky ST, Chamecki M, Dias NL (2012) Estimating the random error in eddy-covariance based fluxes and other turbulence statistics: The filtering method. Bound-Layer Meteorol 144:113–135

    Article  Google Scholar 

  • Salesky ST, Chamecki M (2012) Random errors in turbulence measurements in the atmospheric surface layer: implications for Monin–Obukhov similarity theory. J Atmos Sci 69:3700–3714

    Article  Google Scholar 

  • Salkind NJ (2007) Encyclopedia of Measurement and Statistics. SAGE, California, USA

  • Sánchez MP, Oliveira AP, Varona RP, Tito JV, Codato G, Ribeiro FND, Marques Filho EP, Silveira LC (2020) Rawinsonde-based analysis of the urban boundary layer in the metropolitan region of São Paulo, Brazil. Earth Space Sci 7:e2019EA000781

  • Sfyri E, Rotach MW, Stiperski I, Bosveld FC, Lehner M, Obleitner F (2018) Scalar-flux similarity in the layer near the surface over Mountainous Terrain. Bound-Layer Meteorol 169:11–46

    Article  Google Scholar 

  • Sinclair VA, Belcher SE, Gray SL (2010) Synoptic controls on boundary-layer characteristics. Bound-Layer Meteorol 134:387–409

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulent fluxes over complex mountainous topography. Bound-Layer Meteorol 159:97–121

    Article  Google Scholar 

  • Stiperski I, Calaf M (2018) Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q J R Meteorol Soc 144:641–657

    Article  Google Scholar 

  • Sun J, Burns SP, Lenschow DH et al (2002) Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound-Layer Meteorol 105:199–219

    Article  Google Scholar 

  • Sun K, Li D, Tao L, Zhao Z, Zondlo MA (2015) Quantifying the Influence of Random Errors in Turbulence Measurements on Scalar Similarity in the Atmospheric Surface Layer. Bound-Layer Meteorol 157:61–80

    Article  Google Scholar 

  • SVMA (2020) Digital Mapping of Vegetation Coverage in the São Paulo City: Final Report. Municipal Secretariat of Green and Environment. https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/meio_ambiente/RelCobVeg2020_vFINAL_compressed(1).pdf. Accessed May 2022

  • Taleghani M, Sailor D, Ban-Weiss GA (2016) Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ Res Lett 11:1–12

    Article  Google Scholar 

  • Tampieri F, Maurizi A, Viola A (2009) An investigation on temperature variance scaling in the Atmospheric Surface Layer. Bound-Layer Meteorol 132:31–42

    Article  Google Scholar 

  • Tanaka S, Sugawara H, Narita K, Yokoyama H, Misaka I, Matsushima D (2011) Zero-plane displacement height in a highly built-up area of Tokyo. SOLA 7:93–96

    Article  Google Scholar 

  • Toda M, Sugita M (2003) Single level turbulence measurements to determine roughness parameters of complex terrain. J Geophys Res 108:4363

    Article  Google Scholar 

  • Trini Castelli S, Falabino S (2013) Analysis of the parameterization for the wind-velocity fluctuation standard deviations in the surface layer in low-wind conditions. Meteorol Atmos Phys 119:91–107

    Article  Google Scholar 

  • Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2014) Experimental investigation of the surface layer parameters in low wind conditions in a suburban area. Q J R Meteorol Soc 140:2023–2036

    Article  Google Scholar 

  • Umezaki AS, Ribeiro FND, Oliveira AP, Soares J, Miranda RM (2020) Numerical Characterization of Spatial and Temporal Evolution of Summer Urban Heat Island Intensity in São Paulo. Brazil Urban Clim 32:100615

    Article  Google Scholar 

  • Velasco E, Roth M (2010) Cities as Net Sources of CO2: Review of Atmospheric CO2 Exchange in Urban Environments Measured by Eddy Covariance Technique. Geogr Compass 4:1238–1259

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J Atmos Oceanic Technol 14:512–526

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculation. J Atmos Oceanic Technol 20:660–672

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent Flow at 190m Height Above London During 2006–2008: A Climatology and the Applicability of Similarity Theory. Boundary-Layer Meteorol 137:77–96

    Article  Google Scholar 

  • Zaki SA, Hagishima A, Tanimoto J, Ikegaya N (2011) Aerodynamic parameters of urban building arrays with random geometries. Boundary-Layer Meteorol 138:99–120

    Article  Google Scholar 

  • Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190

    Article  Google Scholar 

Download references

Acknowledgements

The present investigation is part of the MCITY BRAZIL Project, sponsored by the following Brazilian Research Foundations: FAPESP (2011/50178-5), FAPERJ (E26/111.620/2011 and E26/103.407/2012), CNPq (309079/2013-6, 305357/2012-3, 462734/2014-5, 304786/2018-7), and CAPES (001). This work was also sponsored by the Slovenian Research Agency (LI-4154A, L2-5457C, L2-6762C). We are particularly grateful to Dr. Eleonora Sad de Assis and Dr. Daniele Gomes Ferreira from Federal University of Minas Gerais, Minas Gerais, Brazil, for the important contribution in the land use assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Cardoso da Silveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Some of the variables in equations and in text are not processed (in italics font) as per the journal style. It has been corrected now.

Appendices

Appendix A: Similarity Function Uncertainties

Uncertainties in the MOST function, \(\phi\) = \(\phi\)(d, L), can be expressed by error propagation as:

$$ {\sigma }_{\phi }^{{2}} \approx \left( {\frac{\partial \phi }{{\partial {{d}}}}} \right)^{{2}} {\sigma }_{{{d}}}^{{2}} + \left( {\frac{\partial \phi }{{\partial {{L}}}}} \right)^{{2}} {\sigma }_{{{L}}}^{{2}} + {\text{2cov}}\left( {{d, L}} \right)\frac{\partial \phi }{{\partial {{d}}}}\frac{\partial \phi }{{\partial {{L}}}}, $$
(3)

where cov(d, L) is the covariance between d and L. σd and σL are the uncertainty in d and L, respectively.

Although the covariance term in Eq. 3 may be significant (Zilitinkevich et al. 2008), it is unclear how it can be estimated for each 30-min block. Assuming cov(d, L) ≈ 0 (Saleski and Chamecki 2012; Sun et al. 2015), the uncertainty of \(\phi\) can be rewritten as:

$$ {\sigma }_{\phi }^{{2}} \approx \left( {\frac{\partial \phi }{{\partial {{d}}}}} \right)^{{2}} {\sigma }_{{{d}}}^{{2}} + \left( {\frac{\partial \phi }{{\partial {{L}}}}} \right)^{{2}} {\sigma }_{{{L}}}^{{2}} . $$
(4)

Hence, the relative global uncertainty in \(\phi_{{1}} \left( {{\zeta }^{ ^{\prime}} } \right)\) = \({{A}}\left( {{1} + {{B}}\left| {{\zeta }^{ ^{\prime}} } \right|} \right)^{{{C}}}\) and \(\phi_{{2}} \left( {{\zeta }^{ ^{\prime}} } \right)\) = \({{ D}} + {{E}}\left| {{\zeta }^{ ^{\prime}} } \right|^{{{F}}}\) is given respectively by:

$$ \left( {\frac{{{\sigma }_{{\phi_{{1}} }} }}{{\phi_{{1}} }}} \right)^{{2}} \approx \frac{{{{C}}^{{2}} }}{{\left( {{1} + \frac{{1}}{{{{B}}\left| {{\zeta }^{{ ^{\prime}}} } \right|}}} \right)^{{2}} }}\left[ {\left( {\frac{{{\sigma }_{{{d}}} }}{{{{z}} - {{d}}}}} \right)^{{2}} + \left( {\frac{{{\sigma }_{{{L}}} }}{{{L}}}} \right)^{{2}} } \right] $$
(5)

and

$$ \left( {\frac{{{\sigma }_{{\phi_{{2}} }} }}{{\phi_{{2}} }}} \right)^{{2}} \approx \frac{{{{F}}^{{2}} }}{{\left( {{1} + \frac{{{D}}}{{{{E}}\left| {{\zeta }^{{{ }_{{}}^{^{\prime}} }} } \right|^{{{F}}} }}} \right)^{{2}} }}\left[ {\left( {\frac{{{\sigma }_{{{d}}} }}{{{{z}} - {{d}}}}} \right)^{{2}} + \left( {\frac{{{\sigma }_{{{L}}} }}{{{L}}}} \right)^{{2}} } \right]. $$
(6)

The individual impact of σd (σL) on similarity functions can be assessed by solving Eq. 5 and Eq. 6 for σL = 0 (σd = 0).

Appendix B: Morphometric Methods

The simplest morphometric method for estimating d and z0 is the Rule-of-thumb (Rt). Grimmond and Oke (1999) recommended \({{d}}/\overline{{H}}\) = 0.5, 0.6 and 0.7 for low-, medium- and high-density urban sites and \({{z}}_{0}/\overline{{H}}\) = 0.1. They verified reasonable values of d and z0 for North American cities using \({{d}}/\overline{{H}}\) ~ 0.7 and \({{z}}_{0}/\overline{{H}}\) ~ 0.1. Kutzbach (1961), conducting a series of controlled experiments on a frozen lake varying density and distribution of roughness elements (bushel baskets) at the surface, found \({{z}}_{0}/\overline{{H}}\) ~ \({\lambda}_{{P}}^{1.13}\) and \({{d}}/\overline{{H}}\) ~ \({\lambda}_{{P}}^{0.29}\) that holds only for \({\lambda}_{{P}}\) ≤ 0.29. Counihan (1971), performing wind tunnel simulations for various roughness elements (Lego bricks) distributions, derived expressions \({{z}}_{0}/\overline{{H}}\) = 1.08 \({\lambda}_{{P}}\) – 0.08 and \({{d}}/\overline{{H}}\) = 1.4352 \({\lambda}_{{P}}\) – 0.0463, valid for 0.10 ≤ \({\lambda}_{{P}}\)  ≤ 0.25 (see Grimmond and Oke 1999). Macdonald et al. (1998), using staggered arrays of cubes in the wind tunnel simulation, derived the expression: \({{d}}/\overline{{H}}\) = 1 + \({4.43}^{-{\lambda}_{{P}}}\)(\({\lambda}_{{P}}\) – 1) that is valid for 0.0 ≤ \({\lambda}_{{P}}\)  ≤ 1.0.

Kanda et al. (2013) simulated numerically turbulent flows within and above buildings in Japanese cities with a large-eddy simulation and found out the maximum building height (Hmax) is also a relevant length scale, that combined with \(\overline{{H}}\) and σH, can accurately describe the behavior of d in urban surfaces with significant building heights variation. They proposed the following expression: \({{d}}/{{H}}_{{max}}\) = c \({{X}}^{ 2}\) + (a \({\lambda}_{{P}}^{{b}}\)c)X, where X = \(\left({\sigma}_{{H}}+\overline{{H}}\right)/{{H}}_{{max}}\) and the empirical constants are a = 1.29, b = 0.36, and c =  − 0.17. Kent et al. (2017a) verified that morphometric methods based on heterogeneous roughness-element heights, such as Kanda et al.’s (2013), yields d values that are systematically two times bigger than those obtained with Rt method. Taking into consideration this latter feature and based on the simplicity of Rt method, Kent et al. (2017a) proposed using 2Rt values to estimate d.

Kent et al. (2017b) included the aerodynamic effect of trees in the method proposed by Kanda, \({\text{Ka}}_{\text{b-v}}\), by considering an effective building-vegetation fraction λP(b-v) = λP + (1 − p)λP(v), where p is the porosity coefficient, λP and λP(v) are building and wooded fractions, and the mean and standard deviation of the building-vegetation heights (\({\overline{{H}}}_{\left({\text{b-v}}\right)}\) and σH(b-v) respectively).

Appendix C: Anemometric Methods

Rotach (1994) developed an anemometric method (temperature variance method, TVM) to estimate d based entirely on in situ measurements of turbulence in the surface layer over urban areas. In this method, d is estimated iteratively, using as criterion the value of d that produces a minimum in the root-mean-square error (RMSE) between the observed and estimated values of \({\sigma}_{{T}}/{{T}}_{*}\). In the TVM the estimated values are provided by an expression of \({\sigma}_{{T}}/{{T}}_{*}\) that obeys the MOST and is valid for rural areas under convective conditions. Unfortunately, TVM is valid only under thermal homogeneity condition, limiting further its application in urban areas. Besides, determining d from temperature variance casts some doubt about whether this estimate is genuinely representative of dynamic response of the turbulent flow to roughness elements at the surface (Grimmond et al. 1998).

The wind variance method (WVM) is analogue to TVM. It evaluates d using the RMSE between observed and estimated values of \({\sigma}_{{w}}/{{u}}_{*}\). In the WVM the estimated values are provided by an expression of \({\sigma}_{{w}}/{{u}}_{*}\) that obeys the MOST and is valid for rural areas under convective conditions. Toda and Sugita (2003) recommend comparing the d values obtained simultaneously by WVM and TVM to enhance the reliability of the result and to assess the accuracy of the results.

Toda and Sugita (2003) proposed an anemometric method, named friction velocity method (FVM), to determine z0 using measurements of turbulence performed at a single z level under unstable conditions. In this method z0 is estimated iteratively by using as criteria the RMSE between the friction velocity observed, \({{u}}_{*}\) = \(\sqrt{{\overline{{{u} }^{^{\prime}}{{w}}^{^{\prime}}}}_{0}}\), and estimated by MOST expression for mean wind speed at z level, \(\overline{{U}}\) = \({{u}}_{*}/\kappa\left\{{{\text{ln}}}\left[\left({{z}}-{{d}}\right)/{{z}}_{0}\right]+{\psi}_{{m}}\left({\zeta}^{ {{\prime}}}\right)\right\}\), where κ is the von Kármán constant and ψm is the stability correction function for momentum. The interactions are performed varying z0 and fixing d derived previously from TVM. The best estimate of z0 corresponds to the minimum RMSE.

Appendix D: Uncertainty in the Geometric Properties of Buildings

The building plan area fraction is defined as \({\lambda}_{{P}}\) = \({{A}}_{{P}}/{{A}}_{{T}}\), where AP is the total building plan area and AT is the total surface area (here assumed to be an exact number). Therefore, it follows by error propagation that relative uncertainty in λP is:

$$\frac{{\sigma}_{{\lambda}_{{P}}}}{{\lambda}_{{P}}}=\frac{{\sigma}_{{{A}}_{{P}}}}{{{A}}_{{P}}},$$
(7)

where \({\sigma}_{{{A}}_{{P}}}\) is the uncertainty in AP. In turn, the total building plan area is defined as \({{A}}_{{P}}\) = \(\sum_{{{i}}={1}}^{{n}}{{{A}}}_{{{P}}\left({{i}}\right)}\) for a number n of individual plan areas of buildings, AP(i), independent. Hence, using error propagation:

$${\sigma}_{{{A}}_{{P}}}^{2}=\sum_{{{i}}={1}}^{{n}}{\sigma}_{{{A}}_{{{P}}\left({{i}}\right)}}^{2},$$
(8)

where \({\sigma}_{{{A}}_{{{P}}\left({{i}}\right)}}\) is the AP(i) uncertainty.

By considering the building plan area AP(i) as a square \({\left({\mathbf{P}}_{\mathbf{1}}{{\mathbf{P}}}_{\mathbf{2}}{{\mathbf{P}}}_{\mathbf{3}}{{\mathbf{P}}}_{\mathbf{4}}\right)}_{\left({{i}}\right)}\), \({\sigma}_{{{A}}_{{{P}}\left({{i}}\right)}}\) can be evaluated through the uncertainty in planimetric coordinates \({{x}}_{{{j}}\left({{i}}\right)}\) and \({{y}}_{{{j}}\left({{i}}\right)}\), assumed constant in this analysis and indicated by σxy, of each corner \({{\mathbf{P}}}_{{{j}}\left({{i}}\right)}\) of the square (for j = 1, …, 4). Note that \({{A}}_{{{P}}\left({{i}}\right)}\) = \(\left|\left({{x}}_{{2}\left({{i}}\right)}-{{x}}_{{1}\left({{i}}\right)}\right)\left({{y}}_{{4}\left({{i}}\right)}-{{y}}_{{1}\left({{i}}\right)}\right)-\left({{y}}_{{2}\left({{i}}\right)}-{{y}}_{{1}\left({{i}}\right)}\right)\left({{x}}_{{4}\left({{i}}\right)}-{{x}}_{{1}\left({{i}}\right)}\right)\right|\) by the cross product between vectors \({\mathbf{P}}_{\mathbf{2}\left({{i}}\right)}\)\({\mathbf{P}}_{\mathbf{1}\left({{i}}\right)}\) and \({\mathbf{P}}_{\mathbf{4}\left({{i}}\right)}\)\({\mathbf{P}}_{\mathbf{1}\left({{i}}\right)}\), with constraint \({\left|{\mathbf{P}}_{\mathbf{2}\left({{i}}\right)}-{\mathbf{P}}_{\mathbf{1}\left({{i}}\right)}\right|}^{2}\) = \({\left|{\mathbf{P}}_{\mathbf{4}\left({{i}}\right)}-{\mathbf{P}}_{\mathbf{1}\left({{i}}\right)}\right|}^{2}\). Therefore, the uncertainty in AP(i) is given by:

$$\sigma _{{A_{{P\left( i \right)}} }}^{2} \approx 4A_{{P\left( i \right)}} \sigma _{{xy}}^{2},$$
(9)

for \({{x}}_{{1}\left({{i}}\right)}\), \({{x}}_{{2}\left({{i}}\right)}\), \({{x}}_{{4}\left({{i}}\right)}\), \({{y}}_{{1}\left({{i}}\right)}\), \({{y}}_{{2}\left({{i}}\right)}\) and \({{y}}_{{4}\left({{i}}\right)}\) statistically independent.

According to Brazilian legislation (Oliveira and Paradella 2009), the Brazilian Map Accuracy Standards requires at least 90% of the points \({\mathbf{P}}_{{{j}}\left({{i}}\right)}\) (where i = 1, …, n and j = 1, …, 4) with uncertainty in planimetric coordinates less than 1 m at 1:1000 scale used in the plan area restitution of buildings (GeoSampa 2021). Hence, it is plausible to assume σxy = 0.5 m and, by substituting Eq. 9 in Eq. 8, the uncertainty in AP can be evaluated as \({\sigma}_{{{A}}_{{P}}}\)\(\sqrt{{{A}}_{{P}}}\). Applying this result in Eq. 7, a rough value of the relative uncertainty in λP can be evaluated as:

$$\frac{{\sigma}_{{\lambda}_{{P}}}}{{\lambda}_{{P}}}\approx \frac{\sqrt{{{A}}_{{P}}}}{{{A}}_{{P}}}.$$
(10)

Appendix E: Uncertainty of the Anemometric Method Results

Let r2 be the squared errors between observed and estimated values of a set of n measurements. Then, RMSE2 = \(\overline{{{r}}^{2}}\) and the best estimate of uncertainty in the mean squared error, \(\overline{{{r}}^{2}}\), will be the standard error SE = \(\sqrt{{{\text{var}}}\left({{r}}^{2}\right)/{{n}}}\), whose term var(\({{r}}^{2}\)) ≡ variance of r2. Therefore, by error propagation, the uncertainty in the RMSE is:

$${\sigma}_{{RMSE}}=\frac{1}{{2}{{RMSE}}}\sqrt{\frac{{{\text{var}}}\left({{r}}^{2}\right)}{{n}}.}$$
(11)

On the other hand, since r depends on the fitted function, \(\phi \), the uncertainty of r2 is given by \({\sigma}_{{{r}}^{2}}\) = (\(\partial{{r}}^{2}/\partial\phi \))\({\sigma}_{\phi }\) = 2r \({\sigma}_{\phi }\). By propagating the uncertainty in r2 to RMSE, the uncertainty in RMSE can be expressed by:

$${\sigma}_{{RMSE}}^{2}\approx \frac{1}{{{n}}^{2}{{{RMSE}}}^{2}}\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{{\sigma}_{\phi }^{2}}_{{i}}.$$
(12)

If \(\phi \) = \(\phi \)(x1, …, xm) and \({{\sigma}_{{x}}}_{{j}}\) is the uncertainty in xj, given that all variables xj are statistically independent, then:

$${{\sigma}_{\phi }^{2}}_{{i}}\approx \sum_{{{j}}={1}}^{{m}}{\left(\frac{\partial{\phi }_{{i}}}{\partial{{x}}_{{j}}}\right)}^{2}{{\sigma}_{{x}}^{2}}_{{j}}$$
(13)

and Eq. 12 can be rewritten as

$${\sigma}_{{RMSE}}^{2}\approx \frac{1}{{{n}}^{2}{{{RMSE}}}^{2}}\sum_{{{j}}={1}}^{{m}}\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{\left(\frac{\partial{\phi }_{{i}}}{\partial{{x}}_{{j}}}\right)}^{2}{{\sigma}_{{x}}^{2}}_{{j}}.$$
(14)

Therefore, by substituting Eq. 14 in Eq. 11, the uncertainty of an arbitrary variable xk can be evaluated by:

$${{\sigma}_{{x}}}_{{k}}\approx \sqrt{\frac{{{n}} \, {\text{var}}\left({{r}}^{2}\right)}{4}-\sum_{{{j}}={1}}^{{{m}}-{1}}\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{\left(\frac{\partial{\phi }_{{i}}}{\partial{{x}}_{{j}}}\right)}^{2}{{\sigma}_{{x}}^{2}}_{{j}}} \Bigg /\sqrt{\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{\left(\frac{\partial{\phi }_{{i}}}{\partial{{x}}_{{k}}}\right)}^{2}},$$
(15)

when the uncertainties of the m − 1 other different variables of xk are known.

Hence, the uncertainty of d from anemometric methods TVM and WVM, as well as the uncertainty of z0 from FVM, evaluated in Sect. 3 is:

$${{\sigma}_{{d}}}_{\left({\text{TVM}}\right)}\approx {0.5}\sqrt{{n \text{var}}\left({{r}}^{2}\right)} \Bigg /\sqrt{\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{\left[\frac{0.32}{{{z}}-{{d}}}{\left(-{\zeta}_{{i}}^{{{{\prime}}}}\right)}^{-{1}/{3}}\right]}^{2}},$$
(16)
$${{\sigma}_{{d}}}_{\left({\text{WVM}}\right)}\approx {0.5}\sqrt{{n \text{var}}\left({{r}}^{2}\right)} \Bigg /\sqrt{\sum_{{{i}}={1}}^{{n}}{{{r}}}_{{i}}^{2}{\left[\frac{1.25}{{{z}}-{{d}}}{\left({1}-{{B}}_{{w}}{\zeta}_{{i}}^{ {}^{{{\prime}}}}\right)}^{-{2}/{3}}{\zeta}_{{i}}^{^{{{\prime}}}}\right]}^{2}},$$
(17)
$$\sigma _{{z_{0} \left( \text{FVM} \right)}} \approx \frac{{\sqrt {\frac{{n \, \text{var} \left( {r^{2} } \right)}}{4} - \mathop \sum \nolimits_{{i = 1}}^{n} r_{i}^{2} \left\{ {\frac{{\left( {u_{*}^{{est}} } \right)_{i}^{2} }}{{\kappa \bar{U}_{i} }}\left[ {\frac{1}{{z - d}} + \frac{{\partial \psi _{m} \left( {\zeta _{i}^{\prime } ,\,0} \right)}}{{\partial d}}} \right]} \right\}^{2} \sigma _{d}^{2} } }}{{\sqrt {\mathop \sum \nolimits_{{i = 1}}^{n} r_{i}^{2} \left\{ {\frac{{\left( {u_{*}^{{est}} } \right)_{i}^{2} }}{{\kappa \bar{U}_{i} }}\left[ {\frac{1}{{z_{0} }} - \frac{{\partial \psi _{m} \left( {\zeta _{0} ,\,0} \right)}}{{\partial z_{0} }}} \right]} \right\}^{2} } }},$$
(18)

where κ is the von Kármán constant (0.40), \(\overline{{U}}\) the wind speed measured at z level, and \({{u}}_{*}^{{est}}\) the estimated value of friction velocity by MOST.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silveira, L.C., de Oliveira, A.P., Sánchez, M.P. et al. Observational Investigation of the Statistical Properties of Surface-Layer Turbulence in a Suburban Area of São Paulo, Brazil: Objective Analysis of Scaling-Parameter Accuracy and Uncertainties. Boundary-Layer Meteorol 185, 161–195 (2022). https://doi.org/10.1007/s10546-022-00726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00726-5

Keywords

Navigation