Skip to main content
Log in

Spatial Variation of Statistical and Spectral Properties of the Stream Wise and Wall-Normal Velocity Fluctuations in the Near-Neutral Atmospheric Surface Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Based on high-quality near-neutral atmospheric-surface-layer (ASL) data obtained from an observational site located in flat desert and existing experimental results for a friction Reynolds number Reτ < 106, the spatial variation of the streamwise and wall-normal velocity statistics and the Reτ dependence of the scaling parameters are investigated. The near-neutral ASL results show that, for Reτ > 106, the change of the second-order statistics of the streamwise velocity component with height is consistent with the experimental results for Reτ < 106, while the second-order statistics of the wall-normal velocity component increase linearly with height. In combination with the experimental results for Reτ < 106, the variation of the slope of streamwise turbulence intensity with height and the variation of the slope and intercept of the wall-normal turbulence intensity with height are quantified to reveal that both the streamwise and wall-normal velocity variances follow a generalized logarithmic law, with the distribution of the streamwise and wall-normal velocity components satisfying sub- and super-Gaussian distributions. Spectral analysis shows that the variation of the wavenumber corresponding to the pre-multiplied streamwise and wall-normal spectra peaks with the ratio z/δ obeys the form \( k_{x} \delta = a(\delta /z)^{b} \), where z is the height, kx is the streamwise wavenumber, and δ is the ASL thickness. For the pre-multiplied streamwise spectra, \( b = 0.5 \pm 0.1 \) and the value of a may have a Reynolds-number dependence, while for the pre-multiplied wall-normal spectra, \( a = 2.2 \pm 0.09 \) and \( b = 1.0 \pm 0.1 \). The von Kármán constant, the Townsend–Perry constant and other parameters also display a weak Reynolds-number dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Article  Google Scholar 

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149

    Article  Google Scholar 

  • Baidya R, Philip J, Hutchins N, Monty JP, Marusic I (2017) Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys Fluids 29(2):020712

    Article  Google Scholar 

  • Bailey SCC, Vallikivi M, Hultmark M, Smits AJ (2014) Estimating the value of von Kármán’s constant in turbulent pipe flow. J Fluid Mech 749:79–98

    Article  Google Scholar 

  • Balakumar BJ, Adrian RJ (2007) Large-and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365(1852):665–681

    Article  Google Scholar 

  • Calaf M, Hultmark M, Oldroyd HJ, Simeonov V, Parlange MB (2013) Coherent structures and the k-1 spectral behaviour. Phys Fluids 25(12):125107

    Article  Google Scholar 

  • Claussen M (1985) A model of turbulence spectra in the atmospheric surface layer. Boundary-Layer Meteorol 33(2):151–172

    Article  Google Scholar 

  • Del Alamo JC, Jiménez J, Zandonade P, Moser RD (2004) Scaling of the energy spectra of turbulent channels. J Fluid Mech 500:135–144

    Article  Google Scholar 

  • Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. Handbook of micrometeorology. Springer, Dordrecht, pp 181–208

    Google Scholar 

  • Guala M, Hommema SE, Adrian RJ (2006) Large-scale and very-large-scale motions in turbulent pipe flow. J Fluid Mech 554:521–542

    Article  Google Scholar 

  • Guala M, Metzger M, McKeon BJ (2011) Interactions within the turbulent boundary layer at high Reynolds number. J Fluid Mech 666:573–604

    Article  Google Scholar 

  • Högström ULF (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1):101–124

    Article  Google Scholar 

  • Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett 108(9):094501

    Article  Google Scholar 

  • Hunt JC, Morrison JF (2000) Eddy structure in turbulent boundary layers. Eur J Mech-B/Fluids 19(5):673–694

    Article  Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Article  Google Scholar 

  • Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136

    Article  Google Scholar 

  • Hutchins N, Chauhan K, Marusic I, Monty J, Klewicki J (2012) Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol 145(2):273–306

    Article  Google Scholar 

  • Kaimal JC (1978) Horizontal velocity spectra in an unstable surface layer. J Atmos Sci 35(1):18–24

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JCJ, Izumi Y, Coté OR (1972) Spectral characteristics of surface—layer turbulence. Q J R Meteorol Soc 98(417):563–589

    Article  Google Scholar 

  • Katul G, Chu CR (1998) A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Boundary-Layer Meteorol 86(2):279–312

    Article  Google Scholar 

  • Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11(2):417–422

    Article  Google Scholar 

  • Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:141

    Google Scholar 

  • Kulandaivelu V, Marusic I (2010) Evolution of zero pressure gradient turbulent boundary layers. Evolution 5:9

    Google Scholar 

  • Kunkel GJ, Marusic I (2006) Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J Fluid Mech 548:375–402

    Article  Google Scholar 

  • Li QS, Zhi L, Hu F (2010) Boundary layer wind structure from observations on a 325 m tower. J Wind Eng Ind Aerodyn 98(12):818–832

    Article  Google Scholar 

  • Ligrani PM, Moffat RJ (1986) Structure of transitionally rough and fully rough turbulent boundary layers. J Fluid Mech 162:69–98

    Article  Google Scholar 

  • Liu H, Wang G, Zheng X (2017a) Spatial length scales of large-scale structures in atmospheric surface layers. Phys Rev Fluids 2(6):064606

    Article  Google Scholar 

  • Liu HY, Bo TL, Liang YR (2017b) The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys Fluids 29(3):035104

    Article  Google Scholar 

  • Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys Fluids 15(8):2461–2464

    Article  Google Scholar 

  • Marusic I, Uddin AKM, Perry AE (1997) Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys Fluids 9(12):3718–3726

    Article  Google Scholar 

  • Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22(6):065103

    Article  Google Scholar 

  • Marusic I, Monty JP, Hultmark M, Smits AJ (2013) On the logarithmic region in wall turbulence. J Fluid Mech. https://doi.org/10.1017/jfm.2012.511

    Article  Google Scholar 

  • Meneveau C, Marusic I (2013) Generalized logarithmic law for high-order moments in turbulent boundary layers. J Fluid Mech. https://doi.org/10.1017/jfm.2013.61

    Article  Google Scholar 

  • Metzger M, McKeon BJ, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Philos Trans R Soc A 365(1852):859–876

    Article  Google Scholar 

  • Morrison JF, McKeon BJ, Jiang W, Smits AJ (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508:99–131

    Article  Google Scholar 

  • Nagib H, Christophorou C, Monkewitz P (2004) Impact of pressure-gradient conditions on high Reynolds number turbulent boundary layers. In: XXI international congress of theoretical and applied mechanics, international union of theoretical and applied mechanics

  • Nickels TB, Marusic I, Hafez S, Chong MS (2005) Evidence of the k 1-1 law in a high-Reynolds-number turbulent boundary layer. Phys Rev Lett 95(7):074501

    Article  Google Scholar 

  • Österlund JM, Johansson AV, Nagib HM, Hites MH (2000) A note on the overlap region in turbulent boundary layers. Phys Fluids 12(1):1–4

    Article  Google Scholar 

  • Panchev S (1971) Random functions and turbulence. Pergamon Press, Oxford, p 443

    Google Scholar 

  • Perry AE, Abell CJ (1977) Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes. J Fluid Mech 79(4):785–799

    Article  Google Scholar 

  • Perry AE, Henbest S, Chong MS (1986) A theoretical and experimental study of wall turbulence. J Fluid Mech 165:163–199

    Article  Google Scholar 

  • Rosenberg BJ, Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2013) Turbulence spectra in smooth-and rough-wall pipe flow at extreme Reynolds numbers. J Fluid Mech 731:46–63

    Article  Google Scholar 

  • Schlichting H, Gersten K (2016) Boundary-layer theory. Springer, Berlin

    Google Scholar 

  • Squire DT, Morrill-Winter C, Hutchins N, Schultz MP, Klewicki JC, Marusic I (2016) Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J Fluid Mech 795:210–240

    Article  Google Scholar 

  • Tennekes H (1968) Outline of a second-order theory of turbulent pipe flow. Am Inst Aeronaut Astronaut 6(9):1735–1740

    Article  Google Scholar 

  • Thuillier RH, Lappe UO (1964) Wind and temperature profile characteristics from observations on a 1400 ft tower. J Appl Meteorol 3(3):299–306

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    Google Scholar 

  • Vallikivi M, Ganapathisubramani B, Smits AJ (2015a) Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J Fluid Mech 771:303–326

    Article  Google Scholar 

  • Vallikivi M, Hultmark M, Smits AJ (2015b) Turbulent boundary layer statistics at very high Reynolds number. J Fluid Mech 779:371–389

    Article  Google Scholar 

  • Wang G, Zheng X (2016) Very large scale motions in the atmospheric surface layer: a field investigation. J Fluid Mech 802:464–489

    Article  Google Scholar 

  • Wark CE, Nagib HM (1991) Experimental investigation of coherent structures in turbulent boundary layers. J Fluid Mech 230:183–208

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms’. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Winkel ES, Cutbirth JM, Ceccio SL, Perlin M, Dowling DR (2012) Turbulence profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number. Exp Therm Fluid Sci 40:140–149

    Article  Google Scholar 

  • Wyngaard JC (1992) Atmospheric turbulence. Annu Rev Fluid Mech 24(1):205–234

    Article  Google Scholar 

  • Yaglom AM (1974) Data on turbulence characteristics in the atmospheric surface layer. Acad Sci USSR Izv Atmos Ocean Phys 10:341–352

    Google Scholar 

  • Yang H, Bo T (2017) Scaling of wall-normal turbulence intensity and vertical eddy structures in the atmospheric surface layer. Boundary-Layer Meteorol 2:1–18

    Google Scholar 

  • Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J Fluid Mech 373:33–79

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the National Natural Science Foundation of China (No. 11490551) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-it67). The authors wish to express their sincere appreciation for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Bo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, A., Bo, T.L. Spatial Variation of Statistical and Spectral Properties of the Stream Wise and Wall-Normal Velocity Fluctuations in the Near-Neutral Atmospheric Surface Layer. Boundary-Layer Meteorol 173, 223–242 (2019). https://doi.org/10.1007/s10546-019-00465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00465-0

Keywords

Navigation