Skip to main content
Log in

Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAH:

phenylalanine hydroxylase

LNAA:

large neutral amino acid

BH4 :

6R–L-erythro-5,6,7,8-tetrahydrobiopterin

GTPCH:

GTP cyclohydrolase I

GFRP:

GTPCH feedback regulatory protein (gene Gchfr)

HPA:

hyperphenylalaninemia

PKU:

phenylketonuria

L-Phe:

L-phenylalanine

TH:

tyrosine hydroxylase

TPH:

tryptophan hydroxylase

L-Dopa:

L-3,4-dihydroxyphenylalanine

3OMD:

3-o-methyldopa

HVA:

homovanillic acid

5HTP:

5-hydroxytryptophan

5HIAA:

5-hydroxyindolacetic acid

MHPG:

3-methoxy-4-hydroxyphenylglycol

References

  • Adler-Abramovich L, Vaks L, Carny O et al (2012) Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 8:701–706

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Thöny B (2008) Pterins and related enzymes. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Berlin, p 665–701

  • Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Calvo AC, Scherer T, Pey AL et al (2010) Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. J Neurochem 114:853–863

    Article  PubMed  CAS  Google Scholar 

  • Cansev M, Wurtman RJ (2007) Aromatic amino acids in the brain. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Springer, Berlin, pp 60–97

  • Curtius HC, Niederwieser A, Viscontini M et al (1981) Serotonin and dopamine synthesis in phenylketonuria. Adv Exp Med Biol 133:277–291

    Article  PubMed  CAS  Google Scholar 

  • de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ (2010) Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 99 Suppl 1:S86–S89

    Article  PubMed  CAS  Google Scholar 

  • Donlon J, Sarkissian CN, Levy HL, Scriver CR (2015) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. Chapter 77. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Stylianos E, Antonarakis MD, Ballabio A, Gibson M, Mitchell G (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York http://ommbid.mhmedical.com/content.aspx?bookid=971&sectionid=62673211

    Google Scholar 

  • Elzaouk L, Leimbacher W, Turri M et al (2003) Dwarfism and low insulin-like growth factor-1 due to dopamine depletion in pts−/− mice rescued by feeding neurotransmitter precursors and H4-biopterin. J Biol Chem 278:28303–28311

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Pey AL, Gamez A et al (2004) Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Natl Acad Sci U S A 101:16903–16908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gersting SW, Kemter KF, Staudigl M et al (2008) Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 83:5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9 Suppl 2:169–177

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Kagamiyama H, Hatakeyama K (1993) Feedback regulation mechanism for the control of GTP cyclohydrolase I activity. Science 260:1507–1510

    Article  PubMed  CAS  Google Scholar 

  • Heintz C, Cotton RG, Blau N (2013b) Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat 34:927-36

  • Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ (2009) Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab 96:177–182

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86:615–626

    Article  PubMed  CAS  Google Scholar 

  • Kapatos G, Hirayama K, Shimoji M, Milstien S (1999) GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis. J Neurochem 72:669–675

    Article  PubMed  CAS  Google Scholar 

  • Kolinsky MA, Gross SS (2004) The mechanism of potent GTP cyclohydrolase I inhibition by 2,4-diamino-6-hydroxypyrimidine: requirement of the GTP cyclohydrolase I feedback regulatory protein. J Biol Chem 279:40677–40682

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Hou DC, Ohura T et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135:375–378

    Article  PubMed  CAS  Google Scholar 

  • Lagler FB, Gersting SW, Zsifkovits C et al (2010) New insights into tetrahydrobiopterin pharmacodynamics from Pah enu1/2, a mouse model for compound heterozygous tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Biochem Pharmacol 80:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Lichter-Konecki U, Hipke CM, Konecki DS (1999) Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 67:308–316

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lykkelund C, Nielsen JB, Lou HC et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148:238–245

    Article  PubMed  CAS  Google Scholar 

  • McKean CM (1972) The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res 47:469–476

    Article  PubMed  CAS  Google Scholar 

  • Moller HE, Ullrich K, Weglage J (2000) In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 159 Suppl 2:S121–S125

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Ichinose H (2006) Effect of metals and phenylalanine on the activity of human tryptophan hydroxylase-2: comparison with that on tyrosine hydroxylase activity. Neurosci Lett 401:261–265

    Article  PubMed  CAS  Google Scholar 

  • Oh HJ, Lee H, Park JW et al (2005) Reversal of gene expression profile in the phenylketonuria mouse model after adeno-associated virus vector-mediated gene therapy. Mol Genet Metab 86 Suppl 1:S124–S132

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park ES, Choi EN, Park HY, Jung SC (2009) Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 401:90–99

    Article  PubMed  CAS  Google Scholar 

  • Pascucci T, Andolina D, Mela IL et al (2009) 5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol 12:1067–1079

    Article  PubMed  CAS  Google Scholar 

  • Pascucci T, Giacovazzo G, Andolina D et al (2012) In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. J Inherit Metab Dis 35:1001–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13:2561–2564

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Stricher F, Serrano L, Martinez A (2007) Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am J Hum Genet 81:1006–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietz J, Kreis R, Rupp A et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103:1169–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Rebuffat A, Harding CO, Ding Z, Thony B (2010) Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 21:463–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhard JF Jr, Smith GK, Nichol CA (1986) A rapid and sensitive assay for tyrosine-3-monooxygenase based upon the release of 3H2O and adsorption of [3H]-tyrosine by charcoal. Life Sci 39:2185–2189

    Article  PubMed  CAS  Google Scholar 

  • Sarkissian CN, Boulais DM, McDonald JD, Scriver CR (2000) A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol Genet Metab 69:188–194

    Article  PubMed  CAS  Google Scholar 

  • Sarkissian CN, Ying M, Scherer T, Thöny B, Martinez A (2012) The mechanism of BH4 -responsive hyperphenylalaninemia--as it occurs in the ENU1/2 genetic mouse model. Hum Mutat 33:1464–1473

    Article  PubMed  CAS  Google Scholar 

  • Shen N, Heintz C, Thiel C, Okun JG, Hoffmann GF, Blau N (2016) Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol Genet Metab 117:328–335

    Article  PubMed  CAS  Google Scholar 

  • Smith CB, Kang J (2000) Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci U S A 97:11014–11019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thony B, Calvo AC, Scherer T et al (2008) Tetrahydrobiopterin shows chaperone activity for tyrosine hydroxylase. J Neurochem 106:672–681

    Article  PubMed  CAS  Google Scholar 

  • van Spronsen FJ, Hoeksma M, Reijngoud DJ (2009) Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 32:46–51

    Article  PubMed  CAS  Google Scholar 

  • Werner ER, Blau N, Thony B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414

    Article  PubMed  CAS  Google Scholar 

  • Wettstein S, Underhaug J, Perez B et al (2015) Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur J Hum Gen 23:302–309

    Article  CAS  Google Scholar 

  • Winn SR, Scherer T, Thöny B et al (2017) Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice. Mol Genet Metabol. https://doi.org/10.1016/j.ymgme.2017.10.009

Download references

Acknowledgements

We thank Dr. Ernst Werner for helpful discussions and the Institute for Animal Science at the University of Zürich for cooperation. Financial support was given by the Stiftung für wissenschaftliche Forschung University of Zürich (Baumgarten Stiftung to B.T.), the Swiss National Science Foundation (to B.T.) SNF 310030-162547, the NIH R01NS080866 to C.O.H., the Novartis “Stiftung für medizinisch-biologische Forschung” (to B.T.), The Research Council of Norway (Programmes FORNY and FRIMEDBIO to A.M.), and the K. G. Jebsen Centre for Neuropsychiatric Disorders (to A.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aurora Martinez or Beat Thöny.

Ethics declarations

Conflict of interest

T.Scherer, G.Allegri, C. Sarkissian, M. Ying, H.M. Grisch-Chan, A. Rassi, S. Winn, C. Harding, A. Martinez and B. Thöny declare that they have no conflict of interest.

Informed consent

This article does not contain any studies with human subjects performed by the any of the authors.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed (see also chapter “Materials, methods, and animal husbandry”).

Additional information

Communicated by: Viktor Kožich

Electronic supplementary material

Suppl. Fig. S1

Inhibition of GPTCH activity by 2,4,-diamino-6-hydroxypyrimidine (DAHP) in crude brain extracts from either wild-type or ENU2/2 (PKU) mice. Activity was assayed as the quantity of 7,8,-dihydroneopterin triphosphate produced by 80 mg of brain extract from either wild-type or ENU1/2 mice in the presence of increasing amounts of added DAHP. Assays were performed in triplicates. Two tailed Student‘s t-test, ***p < 0.005, **p < 0.05, *p < 0.1; n = 3 (wild-type and PKU) (GIF 10 kb)

High Resolution (TIFF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, T., Allegri, G., Sarkissian, C.N. et al. Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice. J Inherit Metab Dis 41, 709–718 (2018). https://doi.org/10.1007/s10545-018-0150-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-018-0150-y

Keywords

Navigation