Skip to main content
Log in

PRKAG2 mutations presenting in infancy

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

PRKAG2 encodes the γ2 subunit of AMP-activated protein kinase (AMPK), which is an important regulator of cardiac metabolism. Mutations in PRKAG2 cause a cardiac syndrome comprising ventricular hypertrophy, pre-excitation, and progressive conduction-system disease, which is typically not diagnosed until adolescence or young adulthood. However, significant variability exists in the presentation and outcomes of patients with PRKAG2 mutations, with presentation in infancy being underrecognized. The diagnosis of PRKAG2 can be challenging in infants, and we describe our experience with three patients who were initially suspected to have Pompe disease yet ultimately diagnosed with mutations in PRKAG2. A disease-causing PRKAG2 mutation was identified in each case, with a novel missense mutation described in one patient. We highlight the potential for patients with PRKAG2 mutations to mimic Pompe disease in infancy and the need for confirmatory testing when diagnosing Pompe disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.

Similar content being viewed by others

References

  • Akman HO et al (2007) Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res 62(4):499–504

    Article  CAS  PubMed  Google Scholar 

  • Arad M et al (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109(3):357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arad M et al (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107(22):2850–2856

    Article  CAS  PubMed  Google Scholar 

  • Austin SL et al (2017) Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for a patient presenting with a PRKAG2 mutation. Mol Genet Metab 120(1–2):96–100

    Article  CAS  PubMed  Google Scholar 

  • Blair E et al (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10(11):1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Bobele GB et al (1993) Hypertrophic cardiomyopathy during corticotropin therapy for infantile spasms. A clinical and echocardiographic study. Am J Dis Child 147(2):223–225

    Article  CAS  PubMed  Google Scholar 

  • Burwinkel B et al (2005) Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 76(6):1034–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colan SD (2010) Hypertrophic cardiomyopathy in childhood. Heart Fail Clin 6(4):433–444 vii-iii

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries JM et al (2012) Effect of enzyme therapy and prognostic factors in 69 adults with Pompe disease: an open-label single-center study. Orphanet J Rare Dis 7:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle LW, et al (2014) Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev (5): CD001146

  • Fu L et al (2016) Identification of LAMP2 mutations in early-onset Danon disease with hypertrophic cardiomyopathy by targeted next-generation sequencing. Am J Cardiol 118(6):888–894

    Article  CAS  PubMed  Google Scholar 

  • Gollob MH (2008) Modulating phenotypic expression of the PRKAG2 cardiac syndrome. Circulation 117(2):134–135

    Article  PubMed  Google Scholar 

  • Gollob MH et al (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344(24):1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Gollob MH et al (2002) PRKAG2 cardiac syndrome: familial ventricular pre-excitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol 17(3):229–234

    Article  PubMed  Google Scholar 

  • Hamdan MA et al (2010) Antenatal diagnosis of pompe disease by fetal echocardiography: impact on outcome after early initiation of enzyme replacement therapy. J Inherit Metab Dis 33(Suppl 3):S333–S339

    Article  PubMed  Google Scholar 

  • Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144(12):5179–5183

    Article  CAS  PubMed  Google Scholar 

  • Hay WW Jr (2012) Care of the infant of the diabetic mother. Curr Diab Rep 12(1):4–15

    Article  PubMed  Google Scholar 

  • Huie ML et al (1994) Aberrant splicing in adult onset glycogen storage disease type II (GSDII): molecular identification of an IVS1 (−13T-->G) mutation in a majority of patients and a novel IVS10 (+1GT-->CT) mutation. Hum Mol Genet 3(12):2231–2236

    Article  CAS  PubMed  Google Scholar 

  • Kelly BP et al (2009) Severe hypertrophic cardiomyopathy in an infant with a novel PRKAG2 gene mutation: potential differences between infantile and adult onset presentation. Pediatr Cardiol 30(8):1176–1179

    Article  PubMed  Google Scholar 

  • Kemp BE et al (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24(1):22–25

    Article  CAS  PubMed  Google Scholar 

  • Kim M et al (2014) Mutation in the gamma2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 114(6):966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishnani PS et al (2006) Pompe disease diagnosis and management guideline. Genet Med 8(5):267–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishnani PS et al (2014) Methods of diagnosis of patients with Pompe disease: data from the Pompe registry. Mol Genet Metab 113(1–2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Laforet P et al (2006) A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord 16(3):178–182

    Article  PubMed  Google Scholar 

  • MacRae CA et al (1995) Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest 96(3):1216–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy RT et al (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930

    Article  CAS  PubMed  Google Scholar 

  • National Center for Biotechnology Information: ClinVar (2017). Retrieved from https://www.ncbi.nlm.nih.gov/clinvar/variation/4027

  • Roberts AE et al (2013) Noonan syndrome. Lancet 381(9863):333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, et al (2017) A novel, de novo mutation in PRKAG2 gene: infantile-onset phenotype and signaling pathway involved. Am J Physiol Heart Circ Physiol: ajpheart 00813 02016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya S. Kishnani.

Ethics declarations

Conflict of interest

R. D. Torok, S. Austin, C. Phornphutkul, K. Rotondo, D. Bali, G. Tatum, S. Wechsler, A. Buckley, and P. Kishnani declare that they have no conflict of interest.

Additional information

Responsible Editor: Olaf Bodamer, MD PhD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torok, R.D., Austin, S.L., Phornphutkul, C. et al. PRKAG2 mutations presenting in infancy. J Inherit Metab Dis 40, 823–830 (2017). https://doi.org/10.1007/s10545-017-0072-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0072-0

Navigation