Skip to main content
Log in

Functional characterization of missense mutations in severe methylenetetrahydrofolate reductase deficiency using a human expression system

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADPH-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using FAD as the cofactor. Severe MTHFR deficiency is the most common inborn error of folate metabolism, resulting in hyperhomocysteinemia and homocystinuria. Approximately 70 missense mutations have been described that cause severe MTHFR deficiency, however, in most cases their mechanism of dysfunction remains unclear. Few studies have investigated mutational specific defects; most of these assessing only activity levels from a handful of mutations using heterologous expression. Here, we report the in vitro expression of 22 severe MTHFR missense mutations and two known single nucleotide polymorphisms (p.Ala222Val, p.Thr653Met) in human fibroblasts. Significant reduction of MTHFR activity (<20 % of wild-type) was observed for five mutant proteins that also had highly reduced protein levels on Western blot analysis. The remaining mutations produced a spectrum of enzyme activity levels ranging from 22–122 % of wild-type, while the SNPs retained wild-type-like activity levels. We found increased thermolability for p.Ala222Val and seven disease-causing mutations all located in the catalytic domain, three of which also showed FAD responsiveness in vitro. By contrast, six regulatory domain mutations and two mutations clustering around the linker region showed increased thermostability compared to wild-type protein. Finally, we confirmed decreased affinity for NADPH in individual mutant enzymes, a result previously described in primary patient fibroblasts. Our expression study allows determination of significance of missense mutations in causing deleterious loss of MTHFR protein and activity, and is valuable in detection of aberrant kinetic parameters, but should not replace investigations in native material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Birnbaum T, Blom HJ, Prokisch H et al (2008) Methylenetetrahydrofolate reductase deficiency (homocystinuria type II) as a rare cause of rapidly progressive tetraspastic ity and psychoiss in a previously healthy adult. J Neurol 255:1845–1846

  • Burda P, Schafer A, Suormala T et al (2015) Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients. Hum Mutat 36:611–621

    Article  CAS  PubMed  Google Scholar 

  • Froese DS, Huemer M, Suormala T, et al (2016) Mutation update and review of severe MTHFR deficiency. Hum Mutat 37:427-38. doi: 10.1002/humu.22970

  • Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Rozen R (2000) The thermolabile variant 677C–> T can further reduce activity when expressed in cis with severe mutations for human methylenetetrahydrofolate reductase. Hum Mutat 16:132–138

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Sumner JS, Milos R et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Frosst P, Rosenblatt DS, Rozen R (1995) Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56:1052–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, Rozen R (1996) Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet 59:1268–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  CAS  PubMed  Google Scholar 

  • Homberger A, Linnebank M, Winter C et al (2000) Genomic structure and transcript variants of the human methylenetetrahydrofolate reductase gene. Eur J Hum Genet 8:725–729

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Mulder-Bleile R, Burda P, et al (2015) Clinical pattern, mutations and in vitro residual activity in 33 patients with severe 5, 10 methylenetetrahydrofolate reductase (MTHFR) deficiency. J Inherit Metab Dis 39:115-24. doi: 10.1007/s10545-015-9860-6

  • Jacques PF, Bostom AG, Williams RR et al (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93:7–9

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans LA, Wendel U, Stevens EM, van den Heuvel LP, Trijbels FJ, Blom HJ (1998) Identification of four novel mutations in severe methylenetetrahydrofolate reductase deficiency. Eur J Hum Genet 6:257–265

    Article  CAS  PubMed  Google Scholar 

  • Lee MN, Takawira D, Nikolova AP et al (2009) Functional role for the conformationally mobile phenylalanine 223 in the reaction of methylenetetrahydrofolate reductase from Escherichia coli. Biochemistry 48:7673–7685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litzkas P, Jha KK, Ozer HL (1984) Efficient transfer of cloned DNA into human diploid cells: protoplast fusion in suspension. Mol Cell Biol 4:2549–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marini NJ, Gin J, Ziegle J et al (2008) The prevalence of folate-remedial MTHFR enzyme variants in humans. Proc Natl Acad Sci U S A 105:8055–8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin YN, Olson JE, Ingle JN et al (2006) Methylenetetrahydrofolate reductase haplotype tag single-nucleotide polymorphisms and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:2322–2324

    Article  CAS  PubMed  Google Scholar 

  • Matthews RG, Vanoni MA, Hainfeld JF, Wall J (1984) Methylenetetrahydrofolate reductase. Evidence for spatially distinct subunit domains obtained by scanning transmission electron microscopy and limited proteolysis. J Biol Chem 259:11647–11650

    CAS  PubMed  Google Scholar 

  • Melenovska P, Kopecka J, Krijt J et al (2015) Chaperone therapy for homocystinuria: the rescue of CBS mutations by heme arginate. J Inherit Metab Dis 38:287–294

    Article  CAS  PubMed  Google Scholar 

  • Molloy AM, Daly S, Mills JL et al (1997) Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: implications for folate intake recommendations. Lancet 349:1591–1593

    Article  CAS  PubMed  Google Scholar 

  • Pavlikova M, Sokolova J, Janosikova B et al (2012) Rare allelic variants determine folate status in an unsupplemented European population. J Nutr 142:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Pejchal R, Sargeant R, Ludwig ML (2005) Structures of NADH and CH3-H4folate complexes of Escherichia coli methylenetetrahydrofolate reductase reveal a spartan strategy for a ping-pong reaction. Biochemistry 44:11447–11457

    Article  CAS  PubMed  Google Scholar 

  • Pejchal R, Campbell E, Guenther BD, Lennon BW, Matthews RG, Ludwig ML (2006) Structural perturbations in the Ala –> Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation. Biochemistry 45:4808–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rady PL, Szucs S, Grady J et al (2002) Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) in ethnic populations in Texas; a report of a novel MTHFR polymorphic site, G1793A. Am J Med Genet 107:162–168

    Article  PubMed  Google Scholar 

  • Shan X, Wang L, Hoffmaster R, Kruger WD (1999) Functional characterization of human methylenetetrahydrofolate reductase in Saccharomyces cerevisiae. J Biol Chem 274:32613–32618

    Article  CAS  PubMed  Google Scholar 

  • Sibani S, Leclerc D, Weisberg IS et al (2003) Characterization of mutations in severe methylenetetrahydrofolate reductase deficiency reveals an FAD-responsive mutation. Hum Mutat 21:509–520

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JT, Gaustadnes M, Stabler SP, Allen RH, Mudd SH, Hvas AM (2016) Molecular and biochemical investigations of patients with intermediate or severe hyperhomocysteinemia. Mol Genet Metab 117:344–350

    Article  PubMed  Google Scholar 

  • Sumner J, Jencks DA, Khani S, Matthews RG (1986) Photoaffinity labeling of methylenetetrahydrofolate reductase with 8-azido-S-adenosylmethionine. J Biol Chem 261:7697–7700

    CAS  PubMed  Google Scholar 

  • Suormala T, Gamse G, Fowler B (2002) 5,10-Methylenetetrahydrofolate reductase (MTHFR) assay in the forward direction: residual activity in MTHFR deficiency. Clin Chem 48:835–843

    CAS  PubMed  Google Scholar 

  • Tran P, Leclerc D, Chan M et al (2002) Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome 13:483–492

    Article  CAS  PubMed  Google Scholar 

  • van der Put NM, van den Heuvel LP, Steegers-Theunissen RP et al (1996) Decreased methylene tetrahydrofolate reductase activity due to the 677C–> T mutation in families with spina bifida offspring. J Mol Med (Berl) 74:691–694

    Article  Google Scholar 

  • van der Put NM, Gabreels F, Stevens EM et al (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkins D, Rosenblatt DS (2012) Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis 35:665–670

    Article  CAS  PubMed  Google Scholar 

  • Watkins D, Rosenblatt DS (2014) Inherited disorders of folate and cobalamin transport and metabolism. In: Beaudet AL, Vogelstein B, Valle D et al (eds) The online metabolic and molecular bases of inherited disease. McGraw-Hill, New York

    Google Scholar 

  • Weisberg IS, Jacques PF, Selhub J et al (2001) The 1298A–> C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415

    Article  CAS  PubMed  Google Scholar 

  • Wu BM, Tomatsu S, Fukuda S, Sukegawa K, Orii T, Sly WS (1994) Overexpression rescues the mutant phenotype of L176F mutation causing beta-glucuronidase deficiency mucopolysaccharidosis in two Mennonite siblings. J Biol Chem 269:23681–23688

    CAS  PubMed  Google Scholar 

  • Yamada K, Chen Z, Rozen R, Matthews RG (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci U S A 98:14853–14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano H, Nakaso K, Yasui K et al (2004) Mutations of the MTHFR gene (428C > T and [458G > T + 459C > T]) markedly decrease MTHFR enzyme activity. Neurogenetics 5:135–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Seraina Lutz for technical support with performing MTHFR enzyme analysis. This work was supported by the Rare Disease Initiative Zurich (radiz), a clinical research priority program for rare diseases of the University of Zurich, Switzerland and the Swiss National Science Foundation (SNSF 31003A_138521 and 31003A_156907).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Sean Froese or Matthias R. Baumgartner.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

None.

Additional information

Communicated by: Viktor Kožich

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burda, P., Suormala, T., Heuberger, D. et al. Functional characterization of missense mutations in severe methylenetetrahydrofolate reductase deficiency using a human expression system. J Inherit Metab Dis 40, 297–306 (2017). https://doi.org/10.1007/s10545-016-9987-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-016-9987-0

Keywords

Navigation