Skip to main content
Log in

Analysis of the capacitance of minimally insulated parallel wires implanted in biological tissue

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

State of the art bioelectronic implants are using thin cables for therapeutic electrical stimulation. If cable insulation is thin, biological tissue surrounding cables can be unintentionally stimulated. The capacitance of the cable must be much less than the stimulating electrodes to ensure stimulating currents are delivered to the electrode-tissue interface. This work derives and experimentally validates a model to determine the capacitance of parallel cables implanted in biological tissue. Biological tissue has a high relative permittivity, so the capacitance of cabling implanted in the human body depends on cable insulation thickness. Simulations and measurements demonstrate that insulation thickness influences the capacitance of implanted parallel cables across almost two orders of magnitude: from 20 pF/m to 700 pF/m. The results are verified using four different methods: solving the Laplacian numerically from first principles, using a commercially available electrostatic solver, and measuring twelve different parallel pairs of wires using two different potentiostats. Cable capacitance simulations and measurements are performed in air, a porcine blood pool and porcine muscle tissue. The results do not differ by more than 30% for a given cable across simulation and measurement methodologies. The modelling in this work can be used to design cabling for minimally-invasive biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • J. Timperley. Pacemakers and ICDs. [electronic resource]., ser. Oxford Specialist Handbooks in Cardiology (Oxford University Press, Oxford, 2008)

    Google Scholar 

  • D. Grayden, G. Clark, Implant design and development. Wiley - John Wiley & Sons (2006)

  • K.L. Chou, S. Grube, P.G. Patil. Deep Brain Stimulation: a New Life for People with Parkinson’s, Dystonia and Essential Tremor (Demos Health, New York , 2012)

    Google Scholar 

  • D. Ashworth. I Spy with my Bionic Eye (Dorrance Publishing Co., Pittsburgh, 2014)

    Google Scholar 

  • Y.H.-L. Luo, E. Fukushige, L. Da Cruz, The potential of the second sight system bionic eye implant for partial sight restoration. Expert Rev. Med. Devices. 13(7), 673–681 (2016)

    Article  Google Scholar 

  • K. Hu, M. Jamali, Z.B. Moses, G.N. Friedman, Z.M. Williams, W. Xu, C.A. Ortega, Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Sci. Rep. 8, 10583 (2018). https://doi.org/10.1038/s41598-018-28940-7

    Article  Google Scholar 

  • A. Ma, A.S.Y. Poon, Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst. Mag. 15(2), 54 (2015)

    Article  Google Scholar 

  • G. Chitnis, T. Maleki, B. Samuels, L.B. Cantor, B. Ziaie, A minimally invasive implantable wireless pressure sensor for continuous iop monitoring. IEEE Trans. Biomed. Eng. 60(1), 250–256 (2013)

    Article  Google Scholar 

  • A. Aldaoud, A. Soto-Breceda, W. Tong, G. Conductier, M.A. Tonta, H.A. Coleman, H.C. Parkington, I. Clarke, J. -M. Redoute, D.J. Garrett, S. Prawer, Wireless multichannel optogenetic stimulators enabled by narrow bandwidth resonant tank circuits. Sens. Actuators A Phys. 271, 201–211 (2018)

    Article  Google Scholar 

  • A. Aldaoud, J. -M. Redoute, K. Ganesan, G.S. Rind, S.E. John, S.M. Ronayne, N.L. Opie, D.J. Garrett, S. Prawer, Near-field wireless power transfer to stent-based biomedical implants. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2(3), 193–200 (2018)

    Article  Google Scholar 

  • H. Lee, H. Park, M. Ghovanloo, A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J. Solid State Circuits. 48(9), 2203–2216 (2013)

    Article  Google Scholar 

  • A. Aldaoud, C. Laurenson, F. Rivet, M. Yuce, J. -M. Redoute, Design of a miniaturized wireless blood pressure sensing interface using capacitive coupling. IEEE/ASME Trans. Mech. 1, 487 (2015)

    Article  Google Scholar 

  • X. Liu, M. Zhang, T. Xiong, A.G. Richardson, T.H. Lucas, P.S. Chin, R. Etienne-Cummings, T.D. Tran, J.V. der Spiegel, A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface. IEEE Trans. Biomed. Circuits Syst. 10(4), 874–883 (2016)

    Article  Google Scholar 

  • J.V. der Spiegel, M. Zhang, X. Liu, The next-generation brain machine interface system for neuroscience research and neuroprosthetics development. In: 2017 IEEE 12th International Conference on ASIC (ASICON), pp. 436–439 (2017)

  • L. Karumbaiah, T. Saxena, D. Carlson, K. Patil, R. Patkar, E.A. Gaupp, M. Betancur, G.B. Stanley, L. Carin, R.V. Bellamkonda, Relationship between intracortical electrode design and chronic recording function. Biomaterials. 34, 8061–8074 (2013)

    Article  Google Scholar 

  • B. Ljungquist, P. Petersson, A.J. Johansson, J. Schouenborg, M. Garwicz, A bit-encoding based new data structure for time and memory efficient handling of spike times in an electrophysiological setup. Neuroinformatics. 16(2), 217–229 (2018)

    Article  Google Scholar 

  • A. Aldaoud, J. Redoute, K. Ganesan, G. Rind, S. John, S. Ronayne, N. Opie, D. Garrett, S. Prawer, A stent-based power and data link for sensing intravascular biological indicators. IEEE Sens. Lett. 2 (4), 1–4 (2018)

    Article  Google Scholar 

  • A. Aldaoud, S. Lui, K.S. Keng, S. Moshfegh, A. Soto-Breceda, W. Tong, J.-M. Redoute, D.J. Garrett, Y.T. Wong, S. Prawer, Wide dipole antennas for wireless powering of miniaturised bioelectronic devices. Sensing and Bio-Sensing Research (2019)

  • E. Musk, Neuralink An integrated brain-machine interface platform with thousands of channels. bioRxiv (2019)

  • S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Phys. Med. Biol. 41(11), 2251–2269 (1996)

    Article  Google Scholar 

  • R. Pomfret, K. Sillay, G. Miranpuri, Investigation of the electrical properties of agarose gel: characterization of concentration using nyquist plot phase angle and the implications of a more comprehensive in vitro model of the brain. Ann. Neurosci. 20(3), 99–107 (2013)

    Google Scholar 

  • D.T. Brocker, W.M. Grill, Chapter 1: Principles of electrical stimulation of neural tissue. Handbook of Clinical Neurology. 116(Brain Stimulation), 3–18 (2013)

    Article  Google Scholar 

  • B.J. Roth, A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Transactions on Biomedical Engineering, Biomedical Engineering, IEEE Transactions on, IEEE Trans. Biomed. Eng. 12, 1174 (1995)

    Article  Google Scholar 

  • J.D. Jackson. Classical Electrodynamics (Wiley, New York, 1998)

    MATH  Google Scholar 

  • U.V. Rienen, Numerical methods in computational electrodynamics : linear systems in practical applications., ser. Lecture notes in computational science and engineering Springer (2001)

  • G.L. E. Dhatt, G. Touzot, Finite Element Method. Wiley (2012)

  • H. Gao, R. Walker, P. Nuyujukian, K. Makinwa, K. Shenoy, B. Murmann, T. Meng, Hermese: a 96-channel full data rate direct neural interface in 0.13 μ m cmos. IEEE Journal of Solid-State Circuits, Solid-State Circuits, IEEE Journal of, IEEE J. Solid-State Circuits. 4, 1043 (2012)

    Google Scholar 

  • L. Luan, X. Wei, Z. Zhao, J.J. Siegel, O. Potnis, C.A. Tuppen, S. Lin, S. Kazmi, R.A. Fowler, S. Holloway, A.K. Dunn, R.A. Chitwood, C. Xie, Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Science Advances 3(2) (2017). https://doi.org/10.1126/sciadv.1601966. https://advances.sciencemag.org/content/3/2/e1601966

  • J.J. Pancrazio, F. Deku, A. Ghazavi, A.M. Stiller, R. Rihani, C.L. Frewin, V.D. Varner, T.J. Gardner, S.F. Cogan, Thinking small: Progress on microscale neurostimulation technology. Neuromodulation. 8, 745 (2017)

    Article  Google Scholar 

  • Z. Zhao, X. Li, F. He, X. Wei, S. Lin, C. Xie, Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. Journal Of Neural Engineering (2019)

  • W. Tong, K. Fox, K. Ganesan, A.M. Turnley, O. Shimoni, P.A. Tran, A. Lohrmann, T. McFarlane, A. Ahnood, D.J. Garrett, H. Meffin, N.M. O’Brien-Simpson, E.C. Reynolds, S. Prawer, Fabrication of planarised conductively patterned diamond for bio-applications. Mater. Sci. Eng. C. 43, 135–144 (2014)

    Article  Google Scholar 

  • A.R. Harris, C. Newbold, P. Carter, R. Cowan, G.G. Wallace, Measuring the effective area and charge density of platinum electrodes for bionic devices. J. Neural. Eng. 4(15), 046015 (2018)

    Article  Google Scholar 

  • R. Liu, R. Chen, A.T. Elthakeb, S.H. Lee, S. Hinckley, M.L. Khraiche, J. Scott, D. Pre, Y. Hwang, A. Tanaka, Y.G. Ro, A.K. Matsushita, X. Dai, C. Soci, S. Biesmans, A. James, J. Nogan, K.L. Jungjohann, D.V. Pete, D.B. Webb, Y. Zou, A.G. Bang, S.A. Dayeh, High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17(5), 2757–2764 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Weikang Chen and Huilin Xue for their assistance with the experimental verification. A. Aldaoud formulated the problem description, proposed the experimental set up, measured the cables in porcine blood and wrote the manuscript. R.-J. Tsai wrote the MATLAB code and performed all numerical simulations and measured the cables in porcine muscle. A. Aldaoud and R.-J. Tsai share first authorship for this manuscript. The rest of the authors were responsible for co-writing the manuscript and experimental discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Aldaoud.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Figure 7 repeats the data presented in Fig. 6 with some minor differences in how the numerical results were obtained. The numerical curves in Fig. 6 were obtained using 𝜖i = 3 such that the curve could be smooth. However, the cables used have insulation permittivity ranging from 1.9 to 3.4. For each cable the numerical method is performed with its specific insulation permittivity. Each wire geometry and permittivity is detailed in Table 1.

Fig. 7
figure 7

Comparison of the numerical and experimental methods used to determine the capacitance of twelve different pairs of parallel wires in air, a porcine blood pool and porcine tissue. C1 to C12 denote a pair of insulated parallel wires with properties detailed in Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, RJ., Aldaoud, A., Redoute, JM. et al. Analysis of the capacitance of minimally insulated parallel wires implanted in biological tissue. Biomed Microdevices 22, 14 (2020). https://doi.org/10.1007/s10544-019-0467-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0467-9

Keywords

Navigation