Skip to main content
Log in

Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nanopore fabrication via the controlled dielectric breakdown (CDB) method offers an opportunity to create solid-state nanopores directly in salt solution with sub-nanometer precision. Driven by trap assisted current tunneling, the method uses localized defects, or traps, in the dielectric material to isolate a breakdown point and fabricate a single pore in less than 10 minutes. Here we present an approach to controlled dielectric breakdown of SiNx in which the nanopore is fabricated in LiCl buffer instead of the traditional KCl buffer. Direct fabrication in LiCl buffer promotes a uniform, symmetric, cylindrical nanopore structure that is fully wet and can be used for experiments in situ. We have shown that fabrication in LiCl reduces the necessity for overnight pore stabilization and allows for the desired analyte to be added in significantly less time than it would take if fabrication was performed in KCl. Pores created by this approach can be used for biosensing applications, including the detection of double-stranded DNA. DNA translocation experiments were conducted in both LiCl and KCl buffer. Experiments conducted in LiCl buffer resulted in about a 2-fold increase in dsDNA transport duration when compared to experiments conducted in KCl buffer of the same concentration. An increase in transport duration of over 10-fold in comparison to KCl was observed when the concentration of the LiCl buffer was increased by a factor of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • T.C. Autumn, B. Kyle, R.H. Adam, T.-C. Vincent, Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology 28(8), 085304 (2017)

    Article  Google Scholar 

  • E. Beamish, H. Kwok, V. Tabard-Cossa, M. Godin, Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores. J. Visual. Exp.: JoVE 80, 51081 (2013)

    Google Scholar 

  • S. Beckert, F. Stallmach, Water dynamics of LiCl solutions confined in nanopores. Diff. Fund. 18(13), 1–4 (2013)

    Google Scholar 

  • J. Bello, Y.-R. Kim, S.M. Kim, T.-J. Jeon, J. Shim, Lipid bilayer membrane technologies: A review on single-molecule studies of DNA sequencing by using membrane nanopores. Microchim. Acta 184(7), 1883–1897 (2017)

    Article  Google Scholar 

  • M. Bestetti, Contribution to the study of uniform corrosion by means of the maximum entropy production rate principle. Prot. Metal. Phys. Chem. Surf. 52(1), 176–181 (2016)

    Article  Google Scholar 

  • D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, The potential and challenges of nanopore sequencing. Nat. Biotech. 26(10), 1146–1153 (2008)

    Article  Google Scholar 

  • K. Briggs, H. Kwok, V. Tabard-Cossa, Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis. Small 10(10), 2077–2086 (2014)

    Article  Google Scholar 

  • P.M. Das, R. Singal, DNA Methylation and Cancer. J. Clin. Oncol. 22(22), 4632–4642 (2004)

    Article  Google Scholar 

  • B. Eric, K. Harold, T.-C. Vincent, G. Michel, Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23(40), 405301 (2012)

    Article  Google Scholar 

  • D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Slowing DNA Translocation in a Solid-State Nanopore. Nano Lett. 5(9), 1734–1737 (2005)

    Article  Google Scholar 

  • G.S. Frankel, N. Sridhar, Understanding localized corrosion. Mater. Today 11(10), 38–44 (2008)

    Article  Google Scholar 

  • A.Y. Grosberg, Y. Rabin, DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics. J. Chem. Phys. 133(16), 165102 (2010)

    Article  Google Scholar 

  • S. Habermehl, R.T. Apodaca, R.J. Kaplar, On dielectric breakdown in silicon-rich silicon nitride thin films. Appl. Phys. Lett. 94(1), 012905 (2009)

    Article  Google Scholar 

  • Y. He, M. Tsutsui, R.H. Scheicher, C. Fan, M. Taniguchi, T. Kawai, Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. Biophys. J. 105(3), 776–782 (2013)

    Article  Google Scholar 

  • D.S. Jeong, C.S. Hwang, Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98(11), 113701 (2005)

    Article  Google Scholar 

  • J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 93, 13770–13773 (1996)

    Article  Google Scholar 

  • J.J. Kasianowicz, J.W. Robertson, E.R. Chan, J.E. Reiner, V.M. Stanford, Nanoscopic porous sensors. Ann. Rev. Anal. Chem. (Palo Alto, Calif.) 1, 737–766 (2008)

    Article  Google Scholar 

  • S.W. Kowalczyk, A.R. Hall, C. Dekker, Detection of Local Protein Structures along DNA Using Solid-State Nanopores. Nano Lett. 10(1), 324–328 (2010)

    Article  Google Scholar 

  • S.W. Kowalczyk, Y.G. Alexander, R. Yitzhak, D. Cees, Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22(31), 315101 (2011)

    Article  Google Scholar 

  • S.W. Kowalczyk, D.B. Wells, A. Aksimentiev, C. Dekker, Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 12(2), 1038–1044 (2012)

    Article  Google Scholar 

  • O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, B.A. Tashmukhamedov, The structure of Staphylococcus aureus alpha-toxin-induced ionic channel. Gen. Physiol. Biophys. 7(5), 467–473 (1988)

    Google Scholar 

  • O.V. Krasilnikov, R.Z. Sabirov, V.I. Ternovsky, P.G. Merzliak, J.N. Muratkhodjaev, A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Lett. 105(1–3), 93–100 (1992)

    Article  Google Scholar 

  • P. Krishnakumar, B. Gyarfas, W. Song, S. Sen, P. Zhang, P. Krstić, S. Lindsay, Slowing DNA Translocation through a Nanopore Using a Functionalized Electrode. ACS Nano 7(11), 10319–10326 (2013)

    Article  Google Scholar 

  • H. Kwok, K. Briggs, V. Tabard-Cossa, Nanopore Fabrication by Controlled Dielectric Breakdown. PLoS One 9(3), e92880 (2014)

    Article  Google Scholar 

  • B. Kyle, C. Martin, K. Harold, L. Timothea, C. Sanmeet, B. José, W. Matthew, T.-C. Vincent, Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology 26(8), 084004 (2015)

    Article  Google Scholar 

  • Z. Liang, Z. Tang, J. Li, R. Hu, D. Yu, Q. Zhao, Interaction prolonged DNA translocation through solid-state nanopores. Nano 7(24), 10752–10759 (2015)

    Google Scholar 

  • D.-H. Lin, C.-Y. Lin, S. Tseng, J.-P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore. Nano 7(33), 14023–14031 (2015)

    Google Scholar 

  • S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, C.H. Tung, Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98(12), 121301 (2005)

    Article  Google Scholar 

  • E.C. Lopes, E. Valls, M.E. Figueroa, A. Mazur, F.G. Meng, G. Chiosis, P.W. Laird, N. Schreiber-Agus, J.M. Greally, E. Prokhortchouk, A. Melnick, Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 68(18), 7258–7263 (2008)

    Article  Google Scholar 

  • M. Mao, J.D. Sherwood, S. Ghosal, Electro-osmotic flow through a nanopore. J. Fluid Mech. 749, 167–183 (2014)

    Article  MathSciNet  Google Scholar 

  • M.M. Marshall, J.A. Ruzicka, E.W. Taylor, A.R. Hall, Detecting DNA Depurination with Solid-State Nanopores. PLoS One 9(7), e101632 (2014)

    Article  Google Scholar 

  • D.V. Melnikov, Z.K. Hulings, M.E. Gracheva, Electro-osmotic flow through nanopores in thin and ultrathin membranes. Phys. Rev. E 95(6), 063105 (2017)

    Article  Google Scholar 

  • F. Nicoli, D. Verschueren, M. Klein, C. Dekker, M.P. Jonsson, DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14(12), 6917–6925 (2014)

    Article  Google Scholar 

  • C. Plesa, D. Verschueren, S. Pud, J. van der Torre, J.W. Ruitenberg, M.J. Witteveen, M.P. Jonsson, A.Y. Grosberg, Y. Rabin, C. Dekker, Direct observation of DNA knots using a solid-state nanopore. Nat. Nano. 11(12), 1093–1097 (2016)

    Article  Google Scholar 

  • S. Pud, D. Verschueren, N. Vukovic, C. Plesa, M.P. Jonsson, C. Dekker, Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. Nano Lett. 15(10), 7112–7117 (2015)

    Article  Google Scholar 

  • J.E. Reiner, J.J. Kasianowicz, B.J. Nablo, J.W.F. Robertson, Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12080–12085 (2010)

    Article  Google Scholar 

  • K.D. Robertson, DNA methylation and human disease. Nat. Rev. Genet. 6(8), 597–610 (2005)

    Article  Google Scholar 

  • M.R. Rountree, K.E. Bachman, J.G. Herman, S.B. Baylin, DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24), 3156–3165 (2001)

    Article  Google Scholar 

  • T.V.S.L. Satyavani, B. Ramya Kiran, V. Rajesh Kumar, A. Srinivas Kumar, S.V. Naidu, Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Eng. Sci. Technol. , Int. J. 19(1), 40–44 (2016)

    Article  Google Scholar 

  • B. Schiedt, K. Healy, A.P. Morrison, R. Neumann, Z. Siwy, Transport of ions and biomolecules through single asymmetric nanopores in polymer films. Nucl. Instrum. Methods Phys. Res., Sect. B 236(1), 109–116 (2005)

    Article  Google Scholar 

  • J. Shim, G.I. Humphreys, B.M. Venkatesan, J.M. Munz, X. Zou, C. Sathe, K. Schulten, F. Kosari, A.M. Nardulli, G. Vasmatzis, R. Bashir, Detection and Quantification of Methylation in DNA using Solid-State Nanopores. Sci. Rep. 3, 1389 (2013)

    Article  Google Scholar 

  • J. Shim, Y. Kim, G.I. Humphreys, A.M. Nardulli, F. Kosari, G. Vasmatzis, W.R. Taylor, D.A. Ahlquist, S. Myong, R. Bashir, Nanopore-Based Assay for Detection of Methylation in Double-Stranded DNA Fragments. ACS Nano 9(1), 290–300 (2015)

    Article  Google Scholar 

  • J. Shim, S. Banerjee, H. Qiu, K.K.H. Smithe, D. Estrada, J. Bello, E. Pop, K. Schulten, R. Bashir, Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nano (2017)

  • K.P. Singh, M. Kumar, Effect of surface charge density and electro-osmotic flow on ionic current in a bipolar nanopore fluidic diode. J. Appl. Phys. 110(8), 084322 (2011)

    Article  Google Scholar 

  • Z.S. Siwy, Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 16(6), 735–746 (2006)

    Article  Google Scholar 

  • R.M.M. Smeets, U.F. Keyser, D. Krapf, M.-Y. Wu, N.H. Dekker, C. Dekker, Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett. 6(1), 89–95 (2006)

    Article  Google Scholar 

  • E. Stellwagen, Q. Dong, N.C. Stellwagen, Monovalent cations affect the free solution mobility of DNA by perturbing the hydrogen-bonded structure of water. Biopolymers 78(2), 62–68 (2005)

    Article  Google Scholar 

  • A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Fast DNA Translocation through a Solid-State Nanopore. Nano Lett. 5(7), 1193–1197 (2005)

    Article  Google Scholar 

  • G. Strathdee, R. Brown, Aberrant DNA methylation in cancer: potential clinical interventions. Expert Rev. Mol. Med. 4(4), 1–17 (2002)

    Article  Google Scholar 

  • B.M. Venkatesan, R. Bashir, Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6(10), 615–624 (2011)

    Article  Google Scholar 

  • I. Vodyanoy, S.M. Bezrukov, Sizing of an ion pore by access resistance measurements. Biophys. J. 62(1), 10–11 (1992)

    Article  Google Scholar 

  • Y. Wang, C. Ying, W. Zhou, L. de Vreede, Z. Liu, J. Tian, Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown. Sci. Rep. 8(1), 1234 (2018)

    Article  Google Scholar 

  • M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nano. 5(2), 160–165 (2010)

    Article  Google Scholar 

  • M. Waugh, A. Carlsen, D. Sean, G.W. Slater, K. Briggs, H. Kwok, V. Tabard-Cossa, Interfacing solid-state nanopores with gel media to slow DNA translocations. Electrophoresis 36(15), 1759–1767 (2015)

    Article  Google Scholar 

  • Weast, R. C., CRC Handbook of Chemistry and Physics, 70th Edition. Taylor & Francis: 1989

  • R.W. Wilson, D.C. Rau, V.A. Bloomfield, Comparison of polyelectrolyte theories of the binding of cations to DNA. Biophys. J. 30(2), 317–325 (1980)

    Article  Google Scholar 

  • Wolf, A. V., Aqueous solutions and body fluids: their concentrative properties and conversion tables. Hoeber Medical Division, Harper & Row: 1966

  • Wu, J.; Register, L. F.; Rosenbaum, E. In Trap-assisted tunneling current through ultra-thin oxide, 1999 I.E. International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No.99CH36296), 1999; pp 389–395

  • I. Yanagi, R. Akahori, T. Hatano, K.-I. Takeda, Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Sci. Rep. 4, 5000 (2014)

    Article  Google Scholar 

  • E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J. Li, J. Yang, M. Mayer, Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nano. 6(4), 253–260 (2011)

    Article  Google Scholar 

  • O.K. Zahid, B.S. Zhao, C. He, A.R. Hall, Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Sci. Rep. 6, 29565 (2016)

    Article  Google Scholar 

  • J. Zhi, Z. Yi-Qi, L. Cong, W. Ping, L. Yu-Qi, Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor. Chin. Phys. B. 25(2), 027701 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Rowan University Startup fund.

We thank Maksudul Mowla, Undergraduate Research Assistant, and Liza Guner, Summer Research Intern, for their assistance in data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwook Shim.

Electronic supplementary material

ESM 1

(DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, J., Shim, J. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown. Biomed Microdevices 20, 38 (2018). https://doi.org/10.1007/s10544-018-0281-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0281-9

Keywords

Navigation