Skip to main content

Advertisement

Log in

Proliferation of human aortic endothelial cells on Nitinol thin films with varying hole sizes

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, we present the effect of micron size holes on proliferation and growth of human aortic endothelial cells (HAECs). Square shaped micron size holes (5, 10, 15, 20 and 25 μm) separated by 10 μm wide struts are fabricated on 5 μm thick sputter deposited Nitinol films. HAECs are seeded onto these micropatterned films and analyzed after 30 days with fluorescence microscopy. Captured images are used to quantify the nucleus packing density, size, and aspect ratio. The films with holes ranging from 10 to 20 μm produce the highest cell packing densities with cell nucleus contained within the hole. This produces a geometrically regular grid like cellular distribution pattern. The cell nucleus aspect ratio on the 10–20 μm holes is more circular in shape when compared to aspect ratio on the continuous film or larger size holes. Finally, the 25 μm size holes prevented the formation of a continuous cell monolayer, suggesting the critical length that cells cannot bridge is between 20 to 25 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • D.W. Baker, X. Liu, H. Weng, C. Luo, L. Tang, Fibroblast/fibrocyte: Surface interaction dictates tissue reactions to micropillar implants. Biomacromolecules 12(4), 997–1005 (2011)

    Article  Google Scholar 

  • W.S. Barry, Covered stents in the treatment of superficial femoral artery disease. Vasc. Dis. Manag. 11, E76–E86 (2014)

    Google Scholar 

  • E. Burkarter, C.K. Saul, F. Thomazi, N.C. Cruz, L.S. Roman, W.H. Schreiner, Superhydrophobic electrosprayed PTFE. Surf. Coat. Technol. 202(1), 194–198 (2007)

    Article  Google Scholar 

  • C.D. Campbell, D. Goldfarb, R.A. Roe, Small arterial substitute: Expanded microporous polytetrafluoroethylene: Patency versus porosity. Ann. Surg. 182, 138–143 (1975)

    Article  Google Scholar 

  • M. Cejna, R. Virmani, R. Jones, H. Bergmeister, C. Loewe, M. Schoder, M. Grgurin, J. Lammer, Biocompatibility and performance of the Wallstent and the Wallgraft, Jostent, and Hemobahn stent-grafts in a sheep model. J. Vasc. Interv. Radiol. 13(8), 823–830 (2002)

    Article  Google Scholar 

  • M. Cejna, R. Virmani, R. Jones, H. Bergmeister, U. Losert, Z. Xu, P. Yang, M. Schoder, J. Lammer, Biocompatibility and performance of the Wallstent and several covered stents in a sheep iliac artery model. J Vasc Interv Radiol: JVIR 12(3), 351–358 (2003)

    Article  Google Scholar 

  • C. Chaabane, F. Otsuka, R. Virmani, M.L. Bochaton-Piallat, Biological responses in stented arteries. Cardiovasc. Res. 99, 353–363 (2013)

    Article  Google Scholar 

  • Q. Cheng, S. Li, K. Komvopoulos, Plasma-assisted surface chemical patterning for single-cell culture. Biomaterials 30(25), 4203–4210 (2009)

  • C.K. Choi, M.T. Breckenridge, C.S. Chen, Engineered materials and the cellular microenvironment: A strengthening interface between cell biology and bioengineering. Trends Cell Biol. 20, 705–714 (2010)

    Article  Google Scholar 

  • Y. Chun, D.S. Levi, K.P. Mohanchandra, G.P. Carman, Superhydrophilic surface treatment for thin film NiTi vascular applications. Mater. Sci. Eng. C 29, 2436–2441 (2009)

    Article  Google Scholar 

  • Y.J. Chun, D.S. Levi, K.P. Mohanchandra, M.C. Fishbein, G.P. Carman, Novel micro-patterning processes for thin film NiTi vascular devices. Smart Mater. Struct. 19, 105021 (2010)

    Article  Google Scholar 

  • Y. Chun, K.P. Colin, D.S. Levi, D. Rigberg, Y. Chen, B.W. Tillman, K.P. Mohanchandra, M. Shayan, G.P. Carman, An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall. J Biomater Appl 31(8), 1196–1202 (2017)

    Article  Google Scholar 

  • P.M. Davidson, H. Özçelik, V. Hasirci, G. Reiter, K. Anselme, Microstructured surfaces cause severe but non-detrimental deformation of the cell nucleus. Adv. Mater. 21(35), 3586–3590 (2009)

  • N. Foin, R.D. Lee, R. Torii, J.L. Guitierrez-Chico, A. Mattesini, S. Nijjer, S. Sen, R. Petraco, J.E. Davies, C. Di Mario, M. Joner, Impact of stent strut design in metallic stents and biodegradable scaffolds. Int. J. Cardiol. 177(3), 800–808 (2014)

    Article  Google Scholar 

  • B. Garipcan, S. Maenz, T. Pham, U. Settmacher, K.D. Jandt, J. Zanow, J. Bossert, Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries - a preliminary study. Adv. Eng. Mat. 13(1–2), B54–B57 (2011)

  • M.A. Golden, S.R. Hanson, T.R. Kirkman, P.A. Schneider, A.W. Clowes, Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J. Vasc. Surg. 11, 838–845 (1990)

    Article  Google Scholar 

  • K. Hazama, H. Miura, T. Shimada, Y. Okuda, T. Murashita, T. Nishibe, Relationship between fibril length and tissue ingrowth in the healing of expanded polytetrafluoroethylene grafts. Surg. Today 34, 685–689 (2004)

    Article  Google Scholar 

  • K. Hirabayashi, E. Saitoh, H. Ijima, T. Takenawa, M. Kodama, M. Hori, Influence of fibril length upon ePTFE graft healing and host modification of the implant. J. Biomed. Mater. Res. 26, 1433–1447 (1992)

    Article  Google Scholar 

  • K. K. Ho, G. P. Carman, Sputter deposition of NiTi thin ® lm shape memory alloy using a heated target. 370, 18–29 (2000)

  • H. Holubec, G. C. Hunter, C. W. Putnam, D. A .Bull, W. D. Rappaport, M. Chvapil, Effect of surgical manipulation of polytetrafluoroethylene grafts on microstructural properties and healing characteristics. Am. J. Surg. 164, 512–516 (1992)

  • W.C. Johnson, K.K. Lee, A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: A prospective randomized department of veterans affairs cooperative study. J. Vasc. Surg. 32, 268–277 (2000)

    Article  Google Scholar 

  • D. Kim, S.B. Khatau, Y. Feng, S. Walcott, S.X. Sun, G.D. Longmore, D. Wirtz, Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. (2012). https://doi.org/10.1038/srep00555

  • J. Lafaurie-Janvore, P. Maiuri, I. Wang, M. Pinot, J.-B. Manneville, T. Betz, M. Balland, M. Piel, ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339(6127), 1625–1629 (2013)

  • P.P. Lee, A. Cerchiari, T.A. Desai, Nitinol-based nanotubular coatings for the modulation of human vascular cell function. Nano Lett. 14, 5021–5028 (2014)

    Article  Google Scholar 

  • D.S. Levi, R. Williams, J. Liu, S. Danon, L.L. Stepan, K.P. Mohanchandra, M.C. Fishbein, G.P. Carman, Thin film nitinol covered stents: Design and animal testing. ASAIO J. 54, 221–226 (2008)

    Article  Google Scholar 

  • K. Loger, A. Engel, J. Haupt, R.L. De Miranda, G. Lutter, E. Quandt, Microstructured nickel-titanium thin film leaflets for hybrid tissue engineered heart valves fabricated by magnetron sputter deposition. Cardiovasc. Eng. Technol. 7(1), 69–77 (2016)

    Article  Google Scholar 

  • J. Lu, C. Yao, L. Yang, T.J. Webster, Decreased platelet adhesion and enhanced endothelial cell functions on Nano and Submicron-rough titanium stents. Tissue Eng. Part A 18, 1389–1398 (2012)

    Article  Google Scholar 

  • A.S. Nair, M. Tilakchand, B.D. Naik, The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation. J Conserv Dent: JCD 18(3), 218 (2015)

    Article  Google Scholar 

  • D. Narayan, S.S. Venkatraman, Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. - Part A 87, 710–718 (2008)

    Article  Google Scholar 

  • S.D. Plant, D.M. Grant, L. Leach, Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials 26(26), 5359–5367 (2005)

    Article  Google Scholar 

  • L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C 23, 551–560 (2003)

    Article  Google Scholar 

  • S. Raghavan, C.S. Chen, Micropatterned environments in cell biology. Adv. Mater. 16, 1303–1313 (2004)

    Article  Google Scholar 

  • D. Rigberg, A. Tulloch, Y. Chun, K.P. Mohanchandra, G.P. Carman, P. Lawrence, Thin-film nitinol (NiTi): A feasibility study for a novel aortic stent graft material. J. Vasc. Surg. 50, 375–380 (2009)

    Article  Google Scholar 

  • A.K. Salem, R. Stevens, R.G. Pearson, M.C. Davies, S.J.B. Tendler, C.J. Roberts, P.M. Williams, K.M. Shakesheff, Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61, 212–217 (2002)

    Article  Google Scholar 

  • H.D. Samaroo, J. Lu, T.J. Webster, Enhanced endothelial cell density on NiTi surfaces with submicron to nanometer roughness. Int. J. Nanomedicine 3, 75 (2008)

    Google Scholar 

  • C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  Google Scholar 

  • M. Schwarzenbacher, M. Kaltenbrunner, M. Brameshuber, C. Hesch, W. Paster, J. Weghuber, B. Heise, A. Sonnleitner, H. Stockinger, G.J. Schütz, Micropatterning for quantitative analysis of protein-protein interactions in living cells. Nat. Methods 5, 1053–1060 (2008)

    Article  Google Scholar 

  • Y. Shen, G. Wang, L. Chen, H. Li, P. Yu, M. Bai, Q. Zhang, J. Lee, Q. Yu, Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomater. 5, 3593–3604 (2009)

    Article  Google Scholar 

  • V.S. Sottiurai, J.S.T. Yao, Y. Vikrom, W.R. Flinn, R.C. Batson, Intimal hyperplasia and neointima: an ultrastructural analysis of thrombosed grafts in humans. Surgery 93(6), 809–817 (1983)

    Google Scholar 

  • L.L. Stepan, D.S. Levi, G.P. Carman, A thin film nitinol heart valve. J. Biomech. Eng. 127(6), 915–918 (2005)

    Article  Google Scholar 

  • G. Tepe, H.P. Wendel, S. Khorchidi, J. Schmehl, J. Wiskirchen, B. Pusich, C.D. Claussen, S.H. Duda, Thrombogenicity of various endovascular stent types: An in vitro evaluation. J. Vasc. Intervent. Radiol. 13(10), 1029–1035 (2002)

    Article  Google Scholar 

  • M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. Sibarita, M. Bornens, The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7(10), 947–953 (2005)

  • A. Venault, Y. Chang, H. Hsu, J. Jhong, H. Yang, T. Wei, K. Tung, A. Higuchi, J. Huang, Biofouling-resistance control of expanded poly (tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. J. Membr. Sci. 439, 48–57 (2013)

    Article  Google Scholar 

  • N. Wang, J.D. Tytell, D.E. Ingber, Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009)

  • Z. Wang, Z. Du, J. Kok, Y. Chan, S. H. Teoh, E.S. Thian, M. Hong, Direct laser microperforation of bioresponsive surface-patterned films with through-hole arrays for vascular tissue-engineering application. (2015a). https://doi.org/10.1021/acsbiomaterials.5b00455

  • Z. Wang, S.H. Teoh, M. Hong, F. Luo, E.Y. Teo, J. Kok, Y. Chan, E.S. Thian, Dual-microstructured porous, anisotropic film for biomimicking of endothelial basement membrane. ACS Appl. Mater. Interfaces 7, 13445–13456 (2015b)

    Article  Google Scholar 

  • C.J. White, W.A. Gray, Endovascular therapies for peripheral arterial disease: an evidence-based review. Circulation 116(19), 2203–2215 (2007)

  • M. Versaevel, T. Grevesse, S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012)

  • H. Xu, R. Deshmukh, T. Timmons, K.T. Nguyen, Enhanced endothelialization on surface modified poly(L-lactic acid) substrates. Tissue Eng. Part A 17, 865–876 (2011)

    Article  Google Scholar 

  • H. Yeh, S. Lu, T. Tian, R. Hong, W. Lee, C. Tsa, Comparison of endothelial cells grown on different stent materials. J. Biomed. Mater. Res. 76A, 835–841 (2006)

    Article  Google Scholar 

  • S. Yoon, Y.K. Kim, E.D. Han, Y. Seo, B.H. Kim, M.R.K. Mofrad, Passive control of cell locomotion using micropatterns: The effect of micropattern geometry on the migratory behavior of adherent cells. Lab Chip 12, 2391 (2012)

    Article  Google Scholar 

  • Z. Zhang, Z. Wang, S. Liu, M. Kodama, Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials 25, 177–187 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation under Division of Materials Research (DMR #1310074). We thank the Department of Bioengineering, Nanoelectronic Research Facilities and California nanosystems institute at UCLA, and Prof. Dino Di Carlo for providing technical assistance and equipment throughout the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M.L., Panduranga, M.K. & Carman, G.P. Proliferation of human aortic endothelial cells on Nitinol thin films with varying hole sizes. Biomed Microdevices 20, 25 (2018). https://doi.org/10.1007/s10544-018-0267-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0267-7

Keywords

Navigation