Skip to main content
Log in

Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present a new strategy for fabricating a silicon nanopore device allowing straightforward fluidic integration and electrical as well as optical monitoring. The device presents nanopores of diameters 10 nm to 160 nm, and could therefore be used to obtain solvent-free free-standing lipid bilayers from small unilamellar vesicles (SUV) or large unilamellar vesicles (LUV). The silicon chip fabrication process only requires front side processing of a silicon-on-insulator (SOI) substrate. A polydimethylsiloxane (PDMS) microfluidic interface is assembled on the silicon chip for fluidic handling and electrical addressing. We detail the electrical specifications of our device and some perspectives showing that the use of an SOI substrate is a convenient way to reduce the electrical noise in a silicon nanopore device without the need of a photolitographic patterned passivation layer. We then demonstrate simultaneous electrical and optical monitoring by capturing negatively charged fluorescent nanoparticles. Finally, in the perspective of solvent-free free-standing lipid bilayers, we show that incubation of SUV results in a drastic increase of the device electrical resistance, which is likely due to the formation of a free-standing lipid bilayer sealing the nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Unilamellar vesicles are vesicles made by a single phospholipid bilayer enclosing a volume of aqueous solution.

  2. 1-acyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino] dodecanoyl}-sn-glycero-3-phosphocholine

  3. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

  4. The content of reservoir 4 is removed and replaced by PBS buffer. The same procedure is repeated for reservoir 2.

  5. see note 3

  6. see note 2

References

  • L. Bacri, A.G. Oukhaled, B. Schiedt, G. Patriarche, E. Bourhis, J. Gierak, J. Pelta, L. Auvray, J. Phys. Chem. B 115, 2890 (2011)

    Article  Google Scholar 

  • A.A. Brian, H.M. McConnell, Proc. Natl. Acad. Sci. U. S. A. 81, 6159 (1984)

    Article  Google Scholar 

  • K. Buchholz, A. Tinazli, A. Kleefen, D. Dorfner, D. Pedone, U. Rant, R. Tampé, G. Abstreiter, M. Tornow, Nanotechnology 19, 445305 (2008)

    Article  Google Scholar 

  • N.-J. Cho, C.W. Frank, B. Kasemo, F. Höök, Nat. Protoc. 5, 1096 (2010)

    Article  Google Scholar 

  • N.-J. Cho, L. Hwang, J. Solandt, C. Frank, Materials 6, 3294 (2013)

    Article  Google Scholar 

  • F.S. Cohen, J. Zimmerberg, A. Finkelstein, J. Gen. Physiol. 75, 251 (1980)

    Article  Google Scholar 

  • J.A. Costa, D.A. Nguyen, E. Leal-Pinto, R.E. Gordon, B. Hanss, PLoS One 8, e60836 (2013)

    Article  Google Scholar 

  • C. Dekker, Nat. Nanotechnol. 2, 209 (2007)

    Article  Google Scholar 

  • V. Dimitrov, U. Mirsaidov, D. Wang, T. Sorsch, W. Mansfield, J. Miner, F. Klemens, R. Cirelli, S. Yemenicioglu, G. Timp, Nanotechnology 21, 065502 (2010)

    Article  Google Scholar 

  • M.D. Fischbein, M. Drndić, Appl. Phys. Lett. 93, 113107 (2008)

    Article  Google Scholar 

  • E. Garza-Licudine, D. Deo, S. Yu, A. Uz-Zaman, W.B. Dunbar, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. 2010, 5736 (2010)

    Google Scholar 

  • J.E. Hall, J. Gen. Physiol. 66, 531 (1975)

    Article  Google Scholar 

  • X. Han, A. Studer, H. Sehr, I. Geissbühler, M. Di Berardino, F.K. Winkler, L.X. Tiefenauer, Adv. Mater. 19, 4466 (2007)

    Article  Google Scholar 

  • M.R. Holmes, T. Shang, A.R. Hawkins, M. Rudenko, P. Measor, H. Schmidt, J. Micronanolithography MEMS MOEMS JM3 9, 023004 (2010)

    Article  Google Scholar 

  • T. Jain, R.J.S. Guerrero, C.A. Aguilar, R. Karnik, Anal. Chem. 85, 3871 (2013)

    Article  Google Scholar 

  • R. Kawano, T. Osaki, H. Sasaki, S. Takeuchi, Small 6, 2100 (2010)

    Article  Google Scholar 

  • C.A. Keller, B. Kasemo, Biophys. J. 75, 1397 (1998)

    Article  Google Scholar 

  • J. Larkin, R.Y. Henley, M. Muthukumar, J.K. Rosenstein, M. Wanunu, Biophys. J. 106, 696 (2014)

    Article  Google Scholar 

  • B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Anal. Chem. 80, 328 (2008)

    Article  Google Scholar 

  • J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko, Nature 412, 166 (2001)

    Article  Google Scholar 

  • S. Liu, Y. Zhao, J.W. Parks, D.W. Deamer, A.R. Hawkins, H. Schmidt, Nano Lett. 14, 4816 (2014)

    Article  Google Scholar 

  • C.A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M.D. Fischbein, K. Venta, Z. Luo, A.T.C. Johnson, M. Drndić, Nano Lett. 10, 2915 (2010)

    Article  Google Scholar 

  • U.M. Mirsaidov, D. Wang, W. Timp, G. Timp, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 367 (2010)

    Article  Google Scholar 

  • V. Mussi, P. Fanzio, G. Firpo, L. Repetto, U. Valbusa, Nanotechnology 23, 435301 (2012)

    Article  Google Scholar 

  • P. Nollert, H. Kiefer, F. Jähnig, Biophys. J. 69, 1447 (1995)

    Article  Google Scholar 

  • M.C. Peterman, J.M. Ziebarth, O. Braha, H. Bayley, H.A. Fishman, D.M. Bloom, Biomed. Microdevices 4, 231 (2002)

    Article  Google Scholar 

  • L. Petrossian, S.J. Wilk, P. Joshi, S. Hihath, J.D. Posner, S.M. Goodnick, T.J. Thornton, Solid State Electron. 51, 1391 (2007)

    Article  Google Scholar 

  • B. Sakmann, E. Neher (eds.), Single-Channel Recording (Plenum Press, New York, 1995)

  • G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M.K. Vandersypen, C. Dekker, Nano Lett. 10, 3163 (2010)

    Article  Google Scholar 

  • Z. Siwy, A. Fuliński, Phys. Rev. Lett. 89 (2002)

  • A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker, Nat. Mater. 2, 537 (2003)

    Article  Google Scholar 

  • H. Suzuki, K. Tabata, Y. Kato-Yamada, H. Noji, S. Takeuchi, Lab Chip 4, 502 (2004)

    Article  Google Scholar 

  • H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Biosens. Bioelectron. 22, 1111 (2007)

    Article  Google Scholar 

  • C. Thibault, F. Carcenac, E. Dague, J. Chalmeau, C. Vieu, Microelectron. Eng. 86, 1393 (2009)

    Article  Google Scholar 

  • M. Tsutsui, S. Hongo, Y. He, M. Taniguchi, N. Gemma, T. Kawai, ACS Nano 6, 3499 (2012)

    Article  Google Scholar 

  • M. Urban, A. Kleefen, N. Mukherjee, P. Seelheim, B. Windschiegl, M. Vor der Brüggen, A. Koçer, R. Tampé, Nano Lett. 14, 1674 (2014)

    Article  Google Scholar 

  • W. Wang, L. Monlezun, M. Picard, P. Benas, O. Français, I. Broutin, B. Le Pioufle, Analyst 137, 847 (2012)

    Article  Google Scholar 

  • R.J. White, E.N. Ervin, T. Yang, X. Chen, S. Daniel, P.S. Cremer, H.S. White, J. Am. Chem. Soc. 129, 11766 (2007)

    Article  Google Scholar 

  • D.J. Woodbury, C. Miller, Biophys. J. 58, 833 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Serge Mazères and Laurence Salomé from IPBS (Toulouse, France) for their kind collaboration on FRAP experiments. We also thank A. Lecestre, P. Dubreuil and B. Rousset for their involvement in the fabrication of the silicon chips. This work was partly supported by LAAS-CNRS micro and nanotechnologies facilities platform member of the French RENATECH network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Trévisiol.

Electronic supplementary material

ESM 1

(DOCX 39.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchand, R., Thibault, C., Carcenac, F. et al. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring. Biomed Microdevices 19, 60 (2017). https://doi.org/10.1007/s10544-017-0195-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0195-y

Keywords

Navigation