Skip to main content

Advertisement

Log in

Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A.P. Alivisatos, A.M. Andrews, E.S. Boyden, et al., ACS Nano 7, 1850 (2013)

    Article  Google Scholar 

  • M.T. Alt, E. Fiedler, L. Rudmann, J.S. Ordonez, P. Ruther, T. Stieglitz, Proc. IEEE 105, 101 (2017)

    Article  Google Scholar 

  • S. Ayub, M. Schwaerzle, O. Paul, and P. Ruther, in Procedia Eng. (Elsevier B.V., 2015), pp. 472–475.

  • S. Ayub, C. Gossler, M. Schwaerzle, E. Klein, O. Paul, U. T. Schwarz, and P. Ruther, in 29th IEEE Int. Conf. Micro Electro Mech. Syst. (IEEE, 2016), pp. 379–382

  • E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Nat. Neurosci. 8, 1263 (2005)

    Article  Google Scholar 

  • H. Cao, L. Gu, S.K. Mohanty, J.-C. Chiao, IEEE Trans. Biomed. Eng. 60, 225 (2013)

    Article  Google Scholar 

  • F.H.C. Crick, Sci. Am. 241, 219 (1979)

    Article  Google Scholar 

  • L.J. Gentet, M. Avermann, F. Matyas, J.F. Staiger, C.C.H. Petersen, Neuron 65, 422 (2010)

    Article  Google Scholar 

  • C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, U.T. Schwarz, J. Phys. D. Appl. Phys. 47, 205401 (2014)

    Article  Google Scholar 

  • V. Gradinaru, F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K.R. Thompson, K. Deisseroth, Cell 141, 154 (2010)

    Article  Google Scholar 

  • M.M. Halassa, J.H. Siegle, J.T. Ritt, J.T. Ting, G. Feng, C.I. Moore, Nat. Neurosci. 14, 1118 (2011)

    Article  Google Scholar 

  • T. Hanson, N. Fitzsimmons, and J. O’Doherty, in Methods Neural Ensemble Rec., 2nd ed. (CRC Press, 2007), pp. 47–55.

  • K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, G. Buzsáki, J. Neurophysiol. 84, 401 (2000)

    Google Scholar 

  • S. Herwik, S. Kisban, A.A.A. Aarts, K. Seidl, G. Girardeau, K. Benchenane, M.B. Zugaro, S.I. Wiener, O. Paul, H.P. Neves, P. Ruther, J. Micromech. Microeng. 19, 74008 (2009)

  • S. Herwik, O. Paul, P. Ruther, J. Microelectromech. Syst. 20, 791 (2011)

    Article  Google Scholar 

  • K. Kampasi, E. Stark, J. Seymour, K. Na, H.G. Winful, G. Buzsáki, K.D. Wise, E. Yoon, Sci. Rep. 6, 30961 (2016)

    Article  Google Scholar 

  • T.-i. Kim, J.G. McCall, Y.H. Jung, X. Huang, E.R. Siuda, Y. Li, J. Song, Y.M. Song, H.A. Pao, R.-H. Kim, C. Lu, S.D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M.P. Tan, Y. Huang, F.G. Omenetto, J.A. Rogers, M.R. Bruchas, Science 340(80), 211 (2013)

    Article  Google Scholar 

  • S. Kisban, J. Kenntner, P. Janssen, R. V. Metzen, S. Herwik, U. Bartsch, T. Stieglitz, O. Paul, and P. Ruther, in IFMBE Proc. (2009), pp. 107–110.

  • G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Proc. Natl. Acad. Sci. 100, 13940 (2003)

    Article  Google Scholar 

  • G.T. Neske, Front. Neural Circuits 9, 88 (2016)

    Article  Google Scholar 

  • HyungDal Park, Hyun-Joon Shin, Il-Joo Cho, Eui-sung Yoon, J.-K. F. Suh, Maesoon Im, Euisik Yoon, Yong-Jun Kim, and Jinseok Kim, in Annual Int. Conf. IEEE Eng. Med. Biol. Soc. (IEEE, 2011), pp. 2961–2964.

  • G. Paxinos and K. B. J. Franklin, The Mouse Brain in Stereotaxic Coordinates, 2nd ed. (Academic Press, 2001).

  • F. Pisanello, L. Sileo, I.A. Oldenburg, M. Pisanello, L. Martiradonna, J.A. Assad, B.L. Sabatini, M. De Vittorio, Neuron 82, 1245 (2014)

    Article  Google Scholar 

  • S. Ramaswamy, H. Markram, Front. Cell. Neurosci. 9, 233 (2015)

    Google Scholar 

  • R. Raz, M. Schwaerzle, O. Paul, and P. Ruther, in Optogen B. Abstr. (2016), p. 50.

  • P. Ruther, O. Paul, Curr. Opin. Neurobiol. 32, 31 (2015)

    Article  Google Scholar 

  • R. Scharf, T. Tsunematsu, N. McAlinden, M.D. Dawson, S. Sakata, K. Mathieson, Sci. Rep. 6, 28381 (2016)

    Article  Google Scholar 

  • M. Schwaerzle, P. Elmlinger, O. Paul, and P. Ruther, in 28th IEEE Int. Conf. Micro Electro Mech. Syst. (IEEE, 2015), pp. 162–165.

  • M. Schwaerzle, O. Paul, and P. Ruther, J. Micromech. Microeng. 27, 65004 (2017)

  • T. Stieglitz, M. Schuetter, K.P. Koch, IEEE Eng. Med. Biol. Mag. 24, 58 (2005)

    Article  Google Scholar 

  • M. Wiest, J. Meloy, and E. Thomson, in Methods Neural Ensemble Rec., 2nd ed. (CRC Press, 2007), pp. 97–124.

  • K. D. Wise, A. M. Sodagar, Ying Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, Proc. IEEE 96, 1184 (2008).

  • F. Wu, E. Stark, P.-C. Ku, K.D. Wise, G. Buzsáki, E. Yoon, Neuron 88, 1136 (2015)

    Article  Google Scholar 

  • O. Yizhar, L.E. Fenno, T.J. Davidson, M. Mogri, K. Deisseroth, Neuron 71, 9 (2011)

    Article  Google Scholar 

  • F. Zhang, L.-P. Wang, M. Brauner, J.F. Liewald, K. Kay, N. Watzke, P.G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, K. Deisseroth, Nature 446, 633 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Union’s 7th Framework Program (FP7/2007-2013) under grant agreement n°600925 (NeuroSeeker), the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant no. EXC 1086), and the Hungarian Brain Research Program (Grant Nos. KTIA-13-NAP-A-IV/1-4,6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleman Ayub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, S., Gentet, L.J., Fiáth, R. et al. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Biomed Microdevices 19, 49 (2017). https://doi.org/10.1007/s10544-017-0190-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0190-3

Keywords

Navigation