Skip to main content
Log in

Nano-Calorimetry based point of care biosensor for metabolic disease management

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Point of care (POC) diagnostics represents one of the fastest growing health care technology segments. Developments in microfabrication have led to the development of highly-sensitive nanocalorimeters ideal for directly measuring heat generated in POC biosensors. Here we present a novel nano-calorimeter-based biosensor design with differential sensing to eliminate common mode noise and capillary microfluidic channels for sample delivery to the thermoelectric sensor. The calorimeter has a resolution of 1.4 ± 0.2 nJ/(Hz)1/2 utilizing a 27 junction bismuth/titanium thermopile, with a total Seebeck coefficient of 2160 μV/K. Sample is wicked to the calorimeter through a capillary channel making it suitable for monitoring blood obtained through a finger prick (<1 μL sample required). We demonstrate device performance in a model assay using catalase, achieving a threshold for hydrogen peroxide quantification of 50 μM. The potential for our device as a POC blood test for metabolic diseases is shown through the quantification of phenylalanine (Phe) in serum, an unmet necessary service in the management of Phenylketonuria (PKU). Pegylated phenylalanine ammonia-lyase (PEG-PAL) was utilized to react with Phe, but reliable detection was limited to <5 mM due to low enzymatic activity. The POC biosensor concept can be multiplexed and adapted to a large number of metabolic diseases utilizing different immobilized enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • S.A. Banta-Wright, R.D. Steiner, J. Perinat. Neonatal Nurs. 18, 1 (2004)

    Article  Google Scholar 

  • L. Ben Mohammadi, T. Klotzbuecher, S. Sigloch, et al., Biomed. Microdevices 17, 4 (2015)

    Article  Google Scholar 

  • C. Chin, S. Chin, T. Laksanasopin, S. Sia, In Point-of-care diagnostics on a Chip, ed. By D. Issadore, R.M. Westervelt (Springer, Berlin Heidelberg, 2013), p. 3

  • B. Danielsson, Appl. Biochem. Biotechnol. 7, 1–2 (1982)

    Article  Google Scholar 

  • B. Danielsson, J. Biotechnol. 15, 3 (1990)

    Article  Google Scholar 

  • B. Davaji, C.H. Lee, Biosens. Bioelectron. 59 (2014)

  • J.I.R. De Corcuera, R.P. Cavalieri, Encyclopedia of agricultural, food, and biological engineering (Taylor & Francis, 2007), pp. 119–123

  • M. Elder, Point of care diagnostics, BCC Res. Rep. (2014)

  • A. Gamez, L. Wang, M. Straub, M.G. Patch, R.C. Stevens, Mol. Ther. 9, 1 (2004)

    Article  Google Scholar 

  • B. Halliwell, M.V. Clement, L.H. Long, FEBS Lett. 486, 1 (2000)

    Article  Google Scholar 

  • H. Koyama, J. Biochem. 92, 4 (1982)

    Article  Google Scholar 

  • A.V. Kustov, V.P. Korolev, Russ. J. Phys. Chem. A 81, 2 (2007)

    Article  Google Scholar 

  • S.V.H. Lai, S. Tadigadapa, In Sensors, 2012 (IEEE, 2012), p. 1

  • F. Lammers, T. Scheper, Enzym. Microb. Technol. 20, 6 (1997)

    Article  Google Scholar 

  • F. Lammers, T. Scheper, In Thermal biosensors, bioactivity, Bioaffinity, ed. By P.K. Bhatia, et al. (Springer, Berlin Heidelberg, 1999), p. 35

  • W. Lee, W. Fon, B.W. Axelrod, M.L. Roukes, Proc. Natl. Acad. Sci. U. S. A. 106, 36 (2009)

    Article  Google Scholar 

  • N. Longo, C.O. Harding, B.K. Burton, D.K. Grange, J. Vockley, M. Wasserstein, G.M. Rice, A. Dorenbaum, J.K. Neuenburg, D.G. Musson, Z. Gu, S. Sile, Lancet 384, 9937 (2014)

    Article  Google Scholar 

  • B. Lubbers, F. Baudenbacher, Anal. Chem. 83, 20 (2011)

    Article  Google Scholar 

  • D.G. Rees, D.H. Jones, Enzym. Microb. Technol. 19, 4 (1996)

    Google Scholar 

  • A. Soni, S.K. Jha, Biosens. Bioelectron. 67 (2015)

  • Y.B. Tewari, E. Gajewski, R.N. Goldberg, J. Phys. Chem. 91, 4 (1987)

    Article  Google Scholar 

  • M.T. Tyn, T.W. Gusek, Biotechnol. Bioeng. 35, 4 (1990)

    Article  Google Scholar 

  • K. Verhaegen, J. Simaels, W.V. Driessche, et al., Biomed. Microdevices 2, 2 (1999)

    Article  Google Scholar 

  • B. Xie, K. Ramanathan, B. Danielsson, In Thermal biosensors, bioactivity, Bioaffinity, ed. By P.K. Bhatia, et al. (Springer, Berlin Heidelberg, 1999), p. 1

Download references

Acknowledgements

This work was supported by a grant from BioVentures, Inc. We thank Raymond Mernaugh for assistance with enzyme binding and reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Baudenbacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazura, E., Lubbers, B.R., Dawson, E. et al. Nano-Calorimetry based point of care biosensor for metabolic disease management. Biomed Microdevices 19, 50 (2017). https://doi.org/10.1007/s10544-017-0181-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0181-4

Keywords

Navigation