Skip to main content
Log in

Pump-free gradient-based micro-device enables quantitative and high-throughput bacterial growth inhibition analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Antibiotic susceptibility testing is very important in antibiotic therapy. Traditional methods to determine antibiotic susceptibility include disk diffusion and broth dilution. However, these tests are always labor intensive, time-consuming, and need large amounts of reagents. In this paper, we demonstrated a novel pump-free micro-device that enables quantitative and high-throughput bacterial growth inhibition analysis. This device consists of a series of wells and diffusion-based antibiotic gradient channels. The wells serve as antibiotic sources and buffer sinks, and we could easily observe the bacterial growth in the gradient channels .The design of the multi-wells is adapted to the commercialized multi-channel pipette, which makes it very convenient for loading reagents into the wells. For each assay, only about 20 μL antibiotic solution is needed. As a demonstration, we used both fluorescence images and dark-field images to quantify the bacterial growth inhibition effect under different antibiotics. The quantitative data of bacterial growth inhibition under different antibiotics can be obtained within 3 to 4 h. Considering the simple operation process and the high-throughput and quantitative result this device can offer, it has great potential to be widely used in clinics and may be useful for the study of the kinetics of bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • J.Q. Boedicker, L. Li, T.R. Kline, R.F. Ismagilov, Lab Chip 8(8), 1265–1272 (2008)

    Article  Google Scholar 

  • S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, Lab Chip 7(6), 763–769 (2007)

    Article  Google Scholar 

  • J. Choi, Y.G. Jung, J. Kim, S. Kim, Y. Jung, H. Na, S. Kwon, Lab Chip 13(2), 280–287 (2013)

    Article  Google Scholar 

  • J. Choi, J. Yoo, M. Lee, E.-G. Kim, J.S. Lee, S. Lee, S. Joo, S.H. Song, E.-C. Kim, J.C. Lee, H.C. Kim, Y.-G. Jung, S. Kwon, Sci. Transl. Med. 6(267), 267ra174 (2014). doi:10.1126/scitranslmed.3009650

  • F. Deiss, M.E. Funes-Huacca, J. Bal, K.F. Tjhung, R. Derda, Lab Chip 14(1), 167–171 (2014)

    Article  Google Scholar 

  • J. Fernandez, M. Navasa, J. Gomez, J. Colmenero, J. Vila, V. Arroyo, J. Rodes, Hepatology 35(1), 140–148 (2002)

    Article  Google Scholar 

  • J.Y. Ho, N.J. Cira, J.A. Crooks, J. Baeza, D.B. Weibel, PLoS One 7(7), e41245 (2012)

    Article  Google Scholar 

  • X. Jiang, Y. Kang, X. Pan, J. Yu, Q. Ouyang, C. Luo, Integr. Biol.: Quant. Biosciences Nano Macro 6(2), 143–151 (2014)

    Article  Google Scholar 

  • M. Kalashnikov, J.C. Lee, J. Campbell, A. Sharon, A.F. Sauer-Budge, Lab Chip 12(21), 4523–4532 (2012)

    Article  Google Scholar 

  • K. Lewis, Nature reviews. Drug Discovery 12(5), 371–387 (2013)

    Article  Google Scholar 

  • B. Li, Y. Qiu, A. Glidle, D. McIlvenna, Q. Luo, J. Cooper, H.C. Shi, H. Yin, Anal. Chem. 86(6), 3131–3137 (2014)

    Article  Google Scholar 

  • L. Liu, C. Luo, X. Ni, L. Wang, K. Yamauchi, S.M. Nomura, N. Nakatsuji, Y. Chen, Biomed. Microdevices 12(3), 505–511 (2010)

    Article  Google Scholar 

  • G. Longo, L. Alonso-Sarduy, L.M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, S. Kasas, Nat. Nanotechnol. 8(7), 522–526 (2013)

    Article  Google Scholar 

  • Y. Lu, J. Gao, D.D. Zhang, V. Gau, J.C. Liao, P.K. Wong, Anal. Chem. 85(8), 3971–3976 (2013)

    Article  Google Scholar 

  • E. Monsó, J. Ruiz, A. Rosell, J. Manterola, J. Fiz, J. Morera, V. Ausina, Am. J. Respir. Crit. Care Med. 152(4), 1316–1320 (1995)

    Article  Google Scholar 

  • H.C. Neu, Science 257(5073), 1064–1073 (1992)

    Article  Google Scholar 

  • M.R. Pulido, M. Garcia-Quintanilla, R. Martin-Pena, J.M. Cisneros, M.J. McConnell, J. Antimicrob. Chemother. 68(12), 2710–2717 (2013)

    Article  Google Scholar 

  • T.C. Scanlon, S.M. Dostal, K.E. Griswold, Biotechnol. Bioeng. 111(2), 232–243 (2014)

    Article  Google Scholar 

  • G. Si, W. Yang, S. Bi, C. Luo, Q. Ouyang, Lab Chip 12(7), 1389–1394 (2012)

    Article  Google Scholar 

  • D.J. Witt, D.E. Craven, W.R. McCabe, Am. J. Med. 82(5), 900–906 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Yang Wei, Zhaojun Li, Qi Ouyang for helpful discussions. This work is partially supported by the NSF of China (10721403, 11074009, 11174012, 11434001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, M., Wang, Y., Wang, S. et al. Pump-free gradient-based micro-device enables quantitative and high-throughput bacterial growth inhibition analysis. Biomed Microdevices 17, 67 (2015). https://doi.org/10.1007/s10544-015-9971-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9971-8

Keywords

Navigation