Skip to main content
Log in

A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly, exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adrianova, L.: Introduction to Linear Systems of Differential Equations, vol. 146. AMS, Providence (1995)

    MATH  Google Scholar 

  2. Arimoto, S., Nagumo, J., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2060–2070 (1964)

    Google Scholar 

  3. Aulbach, B., Wanner, T.: Invariant foliations for Carathéodory type differential equations in Banach spaces. In: Martynyuk, A. (ed.), Advances in Stability Theory at the End of the 20th Century, Stability Control Theory Methods Appl. 13. Taylor and Francis, New York (1999)

  4. Badawy, M., Van Vleck, E.S.: Perturbation theory for the approximation of stability spectra by QR methods for sequences of linear operators on a Hilbert space. Linear Algebra Appl. 437(1), 37–59 (2012)

    Article  MathSciNet  Google Scholar 

  5. Beyn, W.-J.: On invariant close curves for one-step methods. Numer. Math. 51, 103–122 (1987)

    Article  MathSciNet  Google Scholar 

  6. Bogacki, P., Shampine, L.: A 3(2) pair of Runge–Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MathSciNet  Google Scholar 

  7. Breda, D., Van Vleck, E.S.: Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations. Numer. Math. 126(2), 225–257 (2014)

    Article  MathSciNet  Google Scholar 

  8. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16(1), 46–57 (1979)

    Article  MathSciNet  Google Scholar 

  9. Butcher, J.C.: A stability property of implicit Runge–Kutta methods. BIT Numer. Math. 27, 358–361 (1975)

    Article  Google Scholar 

  10. Butcher, J.C.: The equivalence of algebraic stability and AN-stability. BIT Numer. Math. 27(2), 510–533 (1987)

    Article  Google Scholar 

  11. Calvo, M., Jay, L., Söderlind, G.: Stiffness 1952–2012: sixty years in search of a definition. BIT Numer. Math. 55(2), 531–558 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cameron, F., Palmroth, M., Piché, R.: Quasi stage order conditions for SDIRK methods. Appl. Numer. Math. 42(1–3), 61–75 (2002)

    Article  MathSciNet  Google Scholar 

  13. Carpenter, M.H., Kennedy, C.A.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  Google Scholar 

  14. Coppel, W.A.: Lecture Notes in Mathematics # 629: Dichotomies in Stability Theory, vol. 629. Springer, Berlin (1978)

    Book  Google Scholar 

  15. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scan. 4, 33–53 (1956)

    Article  MathSciNet  Google Scholar 

  16. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Royal Inst. Technol., Stockholm, Sweden, Nr. 130: 87 (1959)

  17. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3, 27–43 (1963)

    Article  MathSciNet  Google Scholar 

  18. Dieci, L., Van Vleck, E.S.: Unitary integrators and applications to continuous orthonormalization techniques. SIAM J. Numer. Anal. 310(1), 261–281 (1994)

    Article  MathSciNet  Google Scholar 

  19. Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17(3), 275–291 (1995)

    Article  MathSciNet  Google Scholar 

  20. Dieci, L., Van Vleck, E.S.: Computation of orthonormal factors for fundamental matrix solutions. Numer. Math. 83(4), 599–620 (1999)

    Article  MathSciNet  Google Scholar 

  21. Dieci, L., Van Vleck, E.S.: Lyapunov and other spectra: a survey. Collected Lectures on the Preservation of Stability under Discretization, A Volume Published by SIAM, pp. 197–218 (2002)

  22. Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40(2), 516–542 (2003)

    Article  MathSciNet  Google Scholar 

  23. Dieci, L., Van Vleck, E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101(4), 619–642 (2005)

    Article  MathSciNet  Google Scholar 

  24. Dieci, L., Van Vleck, E.S.: Lyapunov and Sacker–Sell spectral intervals. J. Dyn. Differ. Equ. 19(2), 265–293 (2007)

    Article  MathSciNet  Google Scholar 

  25. Dieci, L., Russell, R., Van Vleck, E.S.: On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34(1), 402–423 (1997)

    Article  MathSciNet  Google Scholar 

  26. Dieci, L., Elia, C., Van Vleck, E.S.: Detecting exponential dichotomy on the real line: SVD and QR algorithms. BIT Numer. Math. 248, 555–579 (2011)

    Article  MathSciNet  Google Scholar 

  27. Eirola, T.: Invariant curves of one-step methods. BIT Numer. Math. 28(1), 113–122 (1988)

    Article  MathSciNet  Google Scholar 

  28. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  29. Kloeden, P., Lorenz, J.: Stable attracting sets in dynamical systems and in their one-step discretizations. SIAM J. Numer. Anal. 23(5), 986–995 (1986)

    Article  MathSciNet  Google Scholar 

  30. Kreiss, H.-O.: Difference methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 15(1), 21–58 (1978)

    Article  MathSciNet  Google Scholar 

  31. Krupa, M., Sandstede, B., Szmolyan, P.: Fast and slow waves in the Fitzhugh–Nagumo equation. J. Differ. Equ. 133(1), 49–97 (1997)

    Article  MathSciNet  Google Scholar 

  32. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifur. Chaos Appl. Sci. Eng. 37(4), 1079–1107 (2007)

    Article  MathSciNet  Google Scholar 

  33. Lyapunov, A.: Problém géneral de la stabilité du mouvement. Int. J. Control 53(3), 531–773 (1992)

    Article  Google Scholar 

  34. Nørsett, S.P., Thomsen, P.G.: Embedded SDIRK-methods of basic order three. BIT Numer. Math. 24(4), 634–646 (1984)

    Article  MathSciNet  Google Scholar 

  35. Palmer, K.: The structurally stable systems on the half-line are those with exponential dichotomy. J. Differ. Equ. 33(1), 16–25 (1979)

    Article  Google Scholar 

  36. Perron, O.: Die stabilitätsfrage bei Differentialgleichungen. Math. Z. 32(1), 703–728 (1930)

    Article  MathSciNet  Google Scholar 

  37. Pötzsche, C.: Fine structure of the dichotomy spectrum. Integr. Equ. Oper. Theory 73(1), 107–151 (2012)

    Article  MathSciNet  Google Scholar 

  38. Pötzsche, C.: Dichotomy spectra of triangular equations. Discrete Contin. Dyn. Syst. Ser. A 36(1), 423–450 (2013)

    Article  MathSciNet  Google Scholar 

  39. Sacker, R., Sell, G.: A spectral theory for linear differential systems. J. Differ. Equ. 27(3), 320–358 (1978)

    Article  MathSciNet  Google Scholar 

  40. Steyer, A., Van Vleck, E.S.: Underlying one-step methods and nonautonomous stability of general linear methods. Discrete Contin. Dyn. Syst. Ser. B (2017). https://doi.org/10.3934/dcdsb.2018108

    Article  MathSciNet  Google Scholar 

  41. Van der Pol, B.: A theory of the amplitude of free and forced triode vibration. Radio Rev. 1, 701–710 (1920)

    Google Scholar 

  42. Van Vleck, E.S.: On the error in the product QR decomposition. SIAM J. Matrix Anal. Appl. 31(4), 1775–1791 (2010)

    Article  MathSciNet  Google Scholar 

  43. Zenisek, A.: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Steyer.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

This research was supported in part by NSF Grant DMS-1419047.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steyer, A.J., Van Vleck, E.S. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods. Bit Numer Math 58, 749–781 (2018). https://doi.org/10.1007/s10543-018-0704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0704-2

Keywords

Mathematics Subject Classification

Navigation