Skip to main content
Log in

Efficient preconditioner of one-sided space fractional diffusion equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient preconditioner for the linear systems arising from the one-sided space fractional diffusion equation with variable coefficients. The shifted Gr\(\ddot{\mathrm{u}}\)nwald formula is employed to discretize the one-sided Riemann–Liouville fractional derivative. The matrix structure of resulting linear systems is Toeplitz-like, which is a summation of an identity matrix and a diagonal-times-nonsymmetric-Toeplitz matrix. A diagonal-times-nonsymmetric-Toeplitz preconditioner is proposed to reduce the condition number of the Toeplitz-like matrix, where the diagonal part comes from the variable coefficients and the nonsymmetric Toeplitz part comes from the Riemann–Liouville derivative. Theoretically, we show that the condition number of the preconditioned matrix is uniformly bounded by a constant independent of discretization step-sizes under certain assumptions on the coefficient function. Due to the uniformly bounded condition number, the Krylov subspace method for the preconditioned linear systems converges linearly and independently on discretization step-sizes. Numerical results are reported to show the efficiency of the proposed preconditioner and to demonstrate its superiority over other tested preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brociek, R.: Crank-Nicolson scheme for space fractional heat conduction equation with mixed boundary condition. In: Damaševičius, R., Napoli, C., Tramontana, E., Woźniak, M. (eds.) Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics, CEUR Workshop Proceedings, pp. 41–45 (2016). http://ceur-ws.org/Vol-1730/p07.pdf

  2. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  Google Scholar 

  3. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  4. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integral Equ. Oper. Theory 15, 730–743 (1992)

    Article  MathSciNet  Google Scholar 

  5. de Hoog, F.: A new algorithm for solving Toeplitz systems of equations. Linear Algebra Appl. 88, 123–138 (1987)

    Article  MathSciNet  Google Scholar 

  6. Huang, F.H., Liu, F.W.: The space-time fractional diffusion equation with Caputo derivatives. J. Appl. Math. Comput. 19(1), 179–190 (2005)

    Article  MathSciNet  Google Scholar 

  7. Jin, X.Q., Lin, F.R., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)

    Article  MathSciNet  Google Scholar 

  8. Lei, S.L., Chen, X., Zhang, X.H.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math. 6, 109–130 (2016)

    Article  MathSciNet  Google Scholar 

  9. Lei, S.L., Huang, Y.C.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94(5), 1062–1078 (2017)

    Article  MathSciNet  Google Scholar 

  10. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Deng, W.H.: A new family of difference schemes for space fractional advection diffusion equation. Adv. Appl. Math. Mech. 9(2), 282–306 (2017)

    Article  MathSciNet  Google Scholar 

  12. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton, USA (2015)

    Book  Google Scholar 

  13. Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    Article  MathSciNet  Google Scholar 

  14. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Becker-Kern, P.: Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66, 102R–105R (2002)

    Article  Google Scholar 

  15. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  16. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  17. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mortici, C.: Methods and algorithms for approximating the gamma function and related functions. A survey. Part I: asymptotic series. Ann. Acad. Rom. Sci. Ser. Math. Appl. 6, 173 (2014)

  19. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  20. Pan, J.Y., Ke, R.H., Ng, M.K., Sun, H.W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)

    Article  MathSciNet  Google Scholar 

  21. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  Google Scholar 

  22. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  Google Scholar 

  23. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  24. Wang, H., Wang, K.X., Sircar, T.: A direct \(o({N}\log ^2 {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Lei Lin.

Additional information

Communicated by Lothar Reichel.

This research was supported by research Grants 12200317, 12306616, 12302715, 12301214 from HKRGC GRF, MYRG2016-00063-FST from University of Macau and 054/2015/A2 from FDCT of Macao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, XL., Ng, M.K. & Sun, HW. Efficient preconditioner of one-sided space fractional diffusion equation. Bit Numer Math 58, 729–748 (2018). https://doi.org/10.1007/s10543-018-0699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0699-8

Keywords

Mathematics Subject Classification

Navigation