Skip to main content
Log in

Modified Douglas splitting methods for reaction–diffusion equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present modifications of the second-order Douglas stabilizing corrections method, which is a splitting method based on the implicit trapezoidal rule. Inclusion of an explicit term in a forward Euler way is straightforward, but this will lower the order of convergence. In the modifications considered here, explicit terms are included in a second-order fashion. For these modified methods, results on linear stability and convergence are derived. Stability holds for important classes of reaction–diffusion equations, and for such problems the modified Douglas methods are seen to be often more efficient than related methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arrarás, A., Gaspar, F.J., Portero, L., Rodrigo, C.: Domain decomposition multigrid methods for nonlinear reaction–diffusion problems. Commun. Nonlinear Sci. Numer. Simul. 20, 699–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrarás, A., Portero, L.: Improved accuracy for time-splitting methods for the numerical solution of parabolic equations. Appl. Math. Comput. 267, 294–303 (2015)

    MathSciNet  Google Scholar 

  3. Arrarás, A., Portero, L., Yotov, I.: Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems. J. Comput. Phys. 257, 1321–1351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borovykh, N., Drissi, D., Spijker, M.N.: A bound on powers of linear operators, with relevance to numerical stability. Appl. Math. Lett. 15, 47–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Craig, I.J.D., Sneyd, A.D.: An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Comput. Math. Appl. 16, 341–350 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas, J.: Alternating direction methods for three space variables. Numer. Math. 4, 41–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J., Gunn, J.E.: A general formulation of alternating direction methods. Numer. Math. 6, 428–453 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faragó, I., Palencia, C.: Sharpening the estimate of the stability constant in the maximum-norm of the Crank-Nicolson scheme for the one-dimensional heat equation. Appl. Numer. Math. 42, 133–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, E., Henningsson, E.: Additive domain decomposition operator splittings—convergence analyses in a dissipative framework. arXiv:1512.05941v3 [math.NA]. To appear in IMA J. Numer. Anal

  10. Hundsdorfer, W.: Unconditional convergence of some Crank-Nicolson LOD methods for initial-boundary value problems. Math. Comp. 58, 35–53 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Hundsdorfer, W.: A note on stability of the Douglas splitting method. Math. Comp. 67, 183–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hundsdorfer, W.: Accuracy and stability of splitting with stabilizing corrections. Appl. Numer. Math. 42, 213–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  14. in ’t Hout: K.J., Welfert, B.D.: Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms. Appl. Numer. Math. 57, 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. in ’t Hout: K.J., Welfert, B.D.: Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms. Appl. Numer. Math. 59, 677–692 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. in ’t Hout, K.J., Mishra, C.: Stability of the modified Craig–Sneyd scheme for two-dimensional convection–diffusion equations with mixed derivative term. Math. Comp. Simul. 81, 2540–2548 (2011)

  17. in ’t Hout: K.J., Mishra, C.: Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms. Appl. Numer. Math. 74, 83–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. in ’t Hout, K.J., Wyns, M.: Convergence of the Hundsdorfer–Verwer scheme for two-dimensional convection–diffusion equations with mixed derivative term. In: Simos, T.E., Tsitouras, C., (eds.) Proceedings Icnaam-2014, AIP Conf. Proc. 1648, p. 850054 (2015)

  19. in ’t Hout, K.J., Wyns, M.: Convergence of the Modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term. J. Comp. Appl. Math. 296, 170–180 (2016)

  20. Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis I, pp. 197–462. North-Holland, Amsterdam (1990)

    Chapter  Google Scholar 

  21. Mathew, T.P., Polyakov, P.L., Russo, G., Wang, J.: Domain decomposition operator splittings for the solution of parabolic equations. SIAM. J. Sci. Comput. 19, 912–932 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Portero, L., Jorge, J.C., Bujanda, B.: Avoiding order reduction of fractional step Runge-Kutta discretizations for linear time dependent coefficient parabolic problems. Appl. Numer. Math. 48, 409–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  24. Serdjukova, S.I.: Uniform stability with respect to the initial data of a six-point symmetric scheme for the heat equation. Zh. Vychisl. Mat. i Mat. Fiz. 4, 212–216 (1964)

    MathSciNet  Google Scholar 

  25. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20, 1456–1480 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of A. Arrarás and L. Portero was partially supported by MINECO grant MTM2014-52859. These authors also gratefully acknowledge the hospitality of the Centrum Wiskunde and Informatica, where this research was partly carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hundsdorfer.

Additional information

Communicated by Anne Kværnø.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrarás, A., in ’t Hout, K.J., Hundsdorfer, W. et al. Modified Douglas splitting methods for reaction–diffusion equations. Bit Numer Math 57, 261–285 (2017). https://doi.org/10.1007/s10543-016-0634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0634-9

Keywords

Mathematics Subject Classification

Navigation