Skip to main content
Log in

Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô stochastic differential equations with general non-commutative noise which have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex scalar linear test problem with multiplicative noise and improve significantly the stability properties of the drift-diagonally-implicit methods previously introduced (Debrabant and Rößler, Appl. Numer. Math. 59(3–4):595–607, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Notice that if R(p,q,ξ)=0 with a non-zero probability, then (3) is clearly numerically asymptotically stable.

  2. In the implementation, we use the initializations \(K_{1}^{0}=X_{0}\) and \(K_{2}^{0}=X_{0}+(1-\gamma) h f(K_{1})\) and we consider the stopping criteria (\(\|K_{i}^{k+1}-K_{i}^{k}\|=0\) or \(\|K_{i}^{k+1}-K_{i}^{k}\|\geq\| K_{i}^{k}-K_{i}^{k-1}\|\)) which guaranties a convergence up to machine precision for the iterations (10). Other stopping criteria, such as \(\|K_{i}^{k+1}-K_{i}^{k}\|<\mathit{Tol}\) where Tol is a prescribed tolerance could also be considered.

References

  1. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Cohen, D., Vilmart, G., Zygalakis, K.C.: High order weak methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput. 34(3), 1800–1823 (2012)

    Article  MathSciNet  Google Scholar 

  3. Abdulle, A., Li, T.: S-ROCK methods for stiff Ito SDEs. Commun. Math. Sci. 6(4), 845–868 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Vilmart, G., Zygalakis, K.: Weak second order explicit stabilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput. (2013, to appear)

  5. Alcock, J., Burrage, K.: Stable strong order 1.0 schemes for solving stochastic ordinary differential equations. BIT Numer. Math. 52(3), 539–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  7. Burrage, K., Burrage, P., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2041), 373–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Debrabant, K., Rößler, A.: Diagonally drift-implicit Runge–Kutta methods of weak order one and two for Itô SDE: s and stability analysis. Appl. Numer. Math. 59(3–4), 595–607 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gard, T.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  10. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Verlag Series in Comput. Math., vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  11. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  12. Higham, D.: A-stability and stochastic mean-square stability. BIT Numer. Math. 40, 404–409 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Higham, D.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  15. Komori, Y.: Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations. J. Comput. Appl. Math. 206(1), 158–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Komori, Y., Mitsui, T.: Stable ROW-type weak scheme for stochastic differential equations. Monte Carlo Methods Appl. 1(4), 279–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milstein, G.N.: Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30(4), 750–766 (1986)

    Article  Google Scholar 

  18. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computing. Springer, Berlin (2004)

    Book  Google Scholar 

  19. Rößler, A.: Second order Runge-Kutta methods for Itô stochastic differential equations. SIAM J. Numer. Anal. 47(3), 1713–1738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Talay, D.: Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications. In: Lecture Notes in Control and Inform. Sci., vol. 61, pp. 294–313. Springer, Berlin (1984)

    Google Scholar 

  22. Tocino, A.: Mean-square stability of second-order Runge-Kutta methods for stochastic differential equations. J. Comput. Appl. Math. 175(2), 355–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The research of A.A. is partially supported under Swiss National Foundation Grant 200021_140692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdulle.

Additional information

Communicated by Anne Kværnø.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulle, A., Vilmart, G. & Zygalakis, K.C. Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations. Bit Numer Math 53, 827–840 (2013). https://doi.org/10.1007/s10543-013-0430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0430-8

Keywords

Mathematics Subject Classification (2000)

Navigation