Skip to main content
Log in

Imaging atoms in medicine

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The innovations in science and technology have allowed researchers to look inside the human body. In some cases, like MRI, the protons present in the body generate enough signal for an image. However, the employ of certain atoms, metallic or non-metallic, enable detection through different imaging techniques (computed tomography, nuclear imaging, ultrasound or optical imaging), and improve the quality of the images. Here we discuss the different imaging atoms used depending on the imaging technique and the new possible imaging atoms for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson CJ, Welch MJ (1999) Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 99:2219–2234

    Article  CAS  PubMed  Google Scholar 

  • Areberg J, Björkman S, Einarsson L, Frankenberg B, Lundqvist H, Mattsson S, Norrgren K, Scheike O, Wallin R (1999) Gamma camera imaging of platinum in tumours and tissues of patients after administration of 191Pt-cisplatin. Acta Oncol 38:221–228

    Article  CAS  PubMed  Google Scholar 

  • Arnello F, Ham HR, Tondeur M, Piepsz A (1999) Overall and single-kidney clearance in children with urinary tract infection and damaged kidneys. J Nucl Med 40:52–55

    CAS  PubMed  Google Scholar 

  • Behan M, O’Connell D, Mattrey RF, Carney DN (1993) Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results. Am J Roentgenol 160:399–405

    CAS  Google Scholar 

  • Breitz HB, Wendt REIII, Stabin MS, Shen S, Erwin WD, Rajendran JG, Eary JF, Durack L, Delpassand E, Martin W, Meredith RF (2006) 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med 47:534–542

    CAS  PubMed  Google Scholar 

  • Bruehlmeier M, Roelcke U, Bläuenstein P, Missimer J, Schubiger PA, Locher JT, Pellikka R, Ametamey SM (2003) Measurement of the extracellular space in brain tumors using 76Br-bromide and PET. J Nucl Med 44:1210–1218

    PubMed  Google Scholar 

  • Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  CAS  PubMed  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  • Cipriani C, Atzei G, Argirò G, Boemi S, Shukla S, Rossi G, Sedda AF (1997) Gamma camera imaging of osseous metastatic lesions by strontium-89 bremsstrahlung. Eur J Nucl Med 24:1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  PubMed  Google Scholar 

  • Ellis BL, Sharma HL (1999) Co, Fe and Ga chelates for cell labeling: a potential use in PET imaging? Nucl Med Commun 20:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Erturk SM, Mortelé KJ, Oliva MR, Ichikawa T, Silverman SG, Cantisani V, Pagliara E, Ros PR (2008) Depiction of normal gastrointestinal anatomy with MDCT: comparison of low- and high-attenuation oral contrast media. Eur J Radiol 66:84–87

    Article  PubMed  Google Scholar 

  • Fritz TA, Unger EC, Sutherland G, Sahn D (1997) Phase I clinical trials of MRX-115. A new ultrasound contrast agent. Invest Radiol 32:735–740

    Article  CAS  PubMed  Google Scholar 

  • Granot J (1988) Sodium imaging of human body organs and extremities in vivo. Radiology 167:547–550

    CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  CAS  PubMed  Google Scholar 

  • Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60:1329–1346

    Article  CAS  PubMed  Google Scholar 

  • Helisch A, Förster GJ, Reber H, Buchholz HG, Arnold R, Göke B, Weber MM, Wiedenmann B, Pauwels S, Haus U, Bouterfa H, Bartenstein P (2004) Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111 In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Jacobs F, Koole M, Goethals I, Van de Wiele C, Ham H, Dierckx R (2004) Registration accuracy of 153Gd transmission images of the brain. Eur J Nucl Med Mol Imaging 31:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Kauczor H, Surkau R, Roberts T (1998) MRI using hyperpolarized noble gases. Eur Radiol 8:820–827

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AL, Rychak JJ, Yang WC, Alikhani S, Li B, Acton S, Lindner JR, Ley K, Kaul S (2006) Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media Mol Imaging 1:259–266

    Article  CAS  PubMed  Google Scholar 

  • Knesaurek K, Machac J, Ho Kim J (2007) Comparison of 2D, 3D high dose and 3D low dose gated myocardial 82Rb PET imaging. BMC Nucl Med 7:4

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy GT, Swailem FM, Srivastava SC, Atkins HL, Simpson LJ, Walsh TK, Ahmann FR, Meinken GE, Shah JH (1997) Tin-117m(4+)DTPA: pharmacokinetics and imaging characteristics in patients with metastatic bone pain. J Nucl Med 38:230–237

    CAS  PubMed  Google Scholar 

  • Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57:1087–1108

    Article  CAS  PubMed  Google Scholar 

  • Liebert A, Wabnitz H, Obrig H, Erdmann R, Möller M, Macdonald R, Rinneberg H, Villringer A, Steinbrink J (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31:600–608

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268

    Article  CAS  PubMed  Google Scholar 

  • Maini CL, Bergomi S, Romano L, Sciuto R (2004) 153Sm-EDTMP for bone pain palliation in skeletal metastases. Eur J Nucl Med Mol Imaging 31(Suppl 1):S171–S178

    Article  PubMed  Google Scholar 

  • Merbach AE, Tóth E (eds) (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

    Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  Google Scholar 

  • Mulder WJ, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JG, Vucic E, Amirbekian V, Tang C, Chin PT, Nicolay K, Fayad ZA (2007) Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med 58:1164–1170

    Article  PubMed  Google Scholar 

  • Sboros V (2008) Response of contrast agents to ultrasound. Adv Drug Deliv Rev 60:1117–1136

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Arditi M, Barrau MB, Brochot J, Broillet A, Ventrone R, Yan F (1995) BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 30:451–457

    Article  CAS  PubMed  Google Scholar 

  • Shinya T, Sato S, Kato K, Gobara H, Akaki S, Date H, Kanazawa S (2008) Assessment of mean transit time in the engrafted lung with 133Xe lung ventilation scintigraphy improves diagnosis of bronchiolitis obliterans syndrome in living-donor lobar lung transplant recipients. Ann Nucl Med 22:31–39

    Article  PubMed  Google Scholar 

  • Siegel JA, Khan SH (1996) Body contour determination and validation for bremsstrahlung SPECT imaging. J Nucl Med 37:495–497

    CAS  PubMed  Google Scholar 

  • Singh J, Daftary A (2008) Iodinated contrast media and their adverse reactions. J Nucl Med Technol 36:69–74

    Article  PubMed  Google Scholar 

  • Thompson KH, Orvig C (2003) Boon and bane of metal ions in medicine. Science 300:936–939

    Article  CAS  PubMed  Google Scholar 

  • Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22:406–416

    Article  CAS  PubMed  Google Scholar 

  • Weinmann H-J, Platzek J, Schirmer H, Pietsch H, Carretero J, Harto J, Medina J, Riefke B, Martin J (2005) Contrast media: future aspects. Eur Radiol 15(Suppl 4):D70–D73

    PubMed  Google Scholar 

  • Xiong QF, Chen Y (2008) Deoxyglucose compounds labeled with isotopes different from 18-fluoride: is there a future in clinical practice? Cancer Biother Radiopharm 23:376–381

    Article  CAS  PubMed  Google Scholar 

  • Yu S-B, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99:2353–2377 and references therein

    Article  CAS  PubMed  Google Scholar 

  • Yu YH, Chang RF, Shen WC, Lin DK, Sun SS, Tu CY, Chiu KL, Hsu WH (2008) Computer-aided diagnosis in two-phase 201Tl-SPECT of thoracic lesions. Nuklearmedizin 47:48–55

    PubMed  Google Scholar 

  • Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. T. A was supported by a JdlC Fellowship. J. C. F. thanks Ayuntamiento de Valencia for the Carmen y Severo Ochoa Fellowship. We acknowledge financial support from Generalitat Valenciana (GV/2007/141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Frías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albelda, M.T., García-España, E. & Frías, J.C. Imaging atoms in medicine. Biometals 22, 393–399 (2009). https://doi.org/10.1007/s10534-008-9181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9181-4

Keywords

Navigation