Skip to main content

Advertisement

Log in

Decadal carbon decomposition dynamics in three peatlands in Northern Minnesota

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The uppermost portion of the peat profile, an area of active diagenetic processes, is exceedingly important for understanding peatland dynamics and the diagenesis and geochemistry of atmospherically-deposited materials. We investigated high resolution carbon (C) accrual and peat decomposition rates at two Sphagnum-rich ombrotrophic bogs and one fen in northern Minnesota, USA by analyzing 1 cm increments from 30 cm thick intact frozen blocks of peat soil. We conducted radiocarbon analysis of Sphagnum cellulose to determine peat age and net C accumulation at each depth interval. Calibrated peat ages were determined using CALIBomb and a compilation of calibration datasets for the pre-bomb period. We fit data with a negative exponential accumulation model and used model-derived parameters to estimate net primary productivity (NPP) and a peat decomposition rate constant k. FTIR spectroscopy and C:N were used to derive humification indices and to chemically characterize the peat. NPP ranged from 180 to 266 g C m−2 year−1, k ranged from 0.015 to 0.019 year−1. Net C accumulation rates ranged from 112 to 174 g C m−2 year−1 at 25 years and 70 to 113 g C m−2 year−1 at 50 years. Mass loss was up to 55% during the first 50 years of peat accumulation. Decomposition is greater at depth in the bogs—where 25 cm of peat correspond to 55 years of peat accumulation—than in the fen, where peat age is approximately 25 years at 25 cm depth. Information on fine-scale variations in peat mass decomposition and loss across ombrotrophic bogs and a fen help interpret other diagenetic processes in peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artz RRE, Chapman SJ, Robertson AHJ, Potts JM, Laggoun-Défarge F, Gogo S, Comont L, Disnar J-R, Francez A-J (2008) FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol Biochem 40:515–527

    Article  Google Scholar 

  • Beer J, Blodeau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim Cosmochim Acta 71:2989–3002

    Article  Google Scholar 

  • Blaauw M, Christen TA (2005) Radiocarbon peat chronologies and environmental change. J R Stat Soc Ser C (Appl Stat) 54:805–816

    Article  Google Scholar 

  • Borgmark A, Schoning K (2006) A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data. J Quat Sci 21:109–114

    Article  Google Scholar 

  • Broder T, Blodau C, Biester H, Knorr KH (2012) Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9:1479–1491

    Article  Google Scholar 

  • Cappuccio JA, Falso MJ, Kashgarian M (2014) Buchholz BA (2014) 14C Analysis of protein extracts from Bacillus spores. Forensic Sci Int 240:54–60. https://doi.org/10.1016/j.forsciint.2014.04.003

    Article  Google Scholar 

  • Chapman SJ, Campbell CD, Fraser AR, Puri G (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33:1193–1200

    Article  Google Scholar 

  • Christensen TR, Michelsen A, Jonasson S, Schmidt IK (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations. Oikos 79:34–44

    Article  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond Ser B Biol Sci 303:605–654

    Article  Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 229–289. https://doi.org/10.1007/978-94-009-5891-3_8

    Chapter  Google Scholar 

  • Cocozza C, D’Orazio V, Miano TM, Shotyk W (2003) Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Org Geochem 34(1):49–60

    Article  Google Scholar 

  • Corbett JE, Tfaily MM, Burdige DJ, Cooper WT, Glaser PH, Chanton JP (2013) Partitioning pathways of CO2 production in peatlands with stable carbon isotopes. Biogeochemistry 114:327. https://doi.org/10.1007/s10533-012-9813-1

    Article  Google Scholar 

  • Dise NB, Verry ES (2001) Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53:143–160

    Article  Google Scholar 

  • Dise N, Shurpali NJ, Weishampel P, Verma SB, Verry ES, Gorham E, Crill PM, Harriss RC, Kelley CA, Yavitt JB, Smemo KA, Kolka RK, Smith K, Kim J, Clement RJ, Arkebauer TJ, Bartlett KB, Billesbach DP, Bridgham SD, Elling AE, Flebbe PA, King JY, Martens CS, Sebacher DI, Williams CJ, Wieder RK (2011) Carbon emissions from peatlands, in Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, FL, pp 297–347

    Chapter  Google Scholar 

  • Frolking S, Roulet NT, Moore T, Richard PJH, Lafleur PM (2001) Modeling short-term, and long-term carbon accumulation in northern peatlands. In: Yu ZC, Bhatti JS, Apps MJ (eds) Long term dynamics and contemporary carbon budget of northern peatlands. Information report NOR-X-383. Canadian Forest Service, Ottawa

    Google Scholar 

  • Gaundiski JB, Dawson TE, Quideau S, Schuur EAG, Roden JS, Trumbore SE, Sandquist DR, Oh SW, Wasylishen RE (2005) Comparative analysis of cellulose preparation techniques for use with C-13, C-14 and O-18 isotopic measurements. Anal Chem 77:7212–7224

    Article  Google Scholar 

  • Glaser PH, Volin JC, Givnish TJ, Hansen BCS, Stricker CA (2012) Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error. J Geophys Res Biogeosci 117:G03026. https://doi.org/10.1029/2011JG001821

    Article  Google Scholar 

  • Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can J Bot 81:429–438

    Article  Google Scholar 

  • Goslar T, van der Knaap WO, Hicks S, Andric M, Czernik J, Goslar E, Räsänen S, Hyötylä H (2005) Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47:115–134

    Article  Google Scholar 

  • Griffiths NA, Sebestyen SD (2016) Dynamic vertical profiles of peat porewater chemistry in a Northern Peatland. Wetlands 36:1119–1130

    Article  Google Scholar 

  • Gupta V, Smemo KA, Yavitt JB, Fowle D, Branfireun B, Basiliko N (2013) Stable isotopes reveal widespread anaerobic methane oxidation across latitude and Peatland type. Environ Sci Technol 47:8273–8279

    Google Scholar 

  • Hicks Pries CE, Schuur EAG, Crummer KG (2011) Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw. Ecosystems 15(1):162–173

    Article  Google Scholar 

  • Hicks Pries CE, Schuur EAG, Crummer KG (2013) Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using d13C and Δ14C. Glob Change Biol 19:649–661. https://doi.org/10.1111/gcb.12058

    Article  Google Scholar 

  • Hill BH, Jicha TM, Lehto LLP, Elonen CM, Sebestyen SD, Kolka RK (2016) Comparison of soil nitrogen mass balance for an ombrotrophic bog and a minerotrophic fen in northern Minnesota. Sci Total Environ 550:880–892

    Article  Google Scholar 

  • Hua Q, Barbetti M, Rakowski A (2013) Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55:2059–2072

    Article  Google Scholar 

  • Kolka RK, Sebestyen SD, Verry ES, Brooks KN (2011) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Leifeld J, Manichetti L (2018) The underappreciated potential of peatlands in global climate change mitigation strategies. Nat Commun 9:1071. https://doi.org/10.1038/s41467-018-03406-6

    Article  Google Scholar 

  • Leifeld J, Steffens M, Galego-Sala A (2012) Sensitivity of peatland carbon loss to organic matter quality. Geophys Res Lett 39:L14704. https://doi.org/10.1029/2012GL051856

    Article  Google Scholar 

  • León C, Oliván G (2014) Recent rates of carbon and nitrogen accumulation in peatlands of Isla Grande de Chiloé-Chile. Rev Chil Hist Nat 87:26. https://doi.org/10.1186/s40693-014-0026-y

    Article  Google Scholar 

  • Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostka JE (2014) Microbial metabolic potential for carbon degradation and nutrient (Nitrogen and Phosohorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80:3531–3540

    Article  Google Scholar 

  • Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. Holocene 14:111–117

    Article  Google Scholar 

  • McFarlane KJ, Hanson PJ, Iversen CM, Phillips JR, Brice DJ (2018) Local spatial heterogeneity of Holocene carbon accumulation throughout the peat profile of an ombrotrophic northern Minnesota bog. Radiocarbon. https://doi.org/10.1017/RDC.2018.37

    Article  Google Scholar 

  • McLaughlin J, Webster K (2014) Effects of climate change on peatlands in the far North of Ontario, Canada: a synthesis. Arct Antarct Alp Res 46:84–102

    Article  Google Scholar 

  • Nichols DS (1998) Temperature of upland and peatland soils in a north central Minnesota forest. Can J Soil Sci 78:493–509

    Article  Google Scholar 

  • Nyberg PR (1987) Soil survey of Itasca County, Minnesota. USDA Soil Conservation Service, Government Printing Office, Washington, DC

    Google Scholar 

  • Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebestyen SD, Kolka RK, Hanson PJ (2012) Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing. Soil Sci Soc Am J 76:1911–1918

    Article  Google Scholar 

  • Preston MD, Smemo KA, McLaughlin JW, Basiliko N (2012) Peatland microbial communities and decomposition processes in the James Bay Lowlands, Canada. Front Microbiol 3:1–15

    Article  Google Scholar 

  • Price GD, McKenzie JE, Pilcher JR, Hoper ST (1997) Carbon-isotope variation in Sphagnum from hummock-hollow complexes: implications for Holocene climate reconstruction. Holocene 7:229–233

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk RC, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Sebestyen SD, Dorrance C, Olson DM, Verry ES, Kolka RK, Elling AE, Kyllander R (2011) Long-term monitoring sites and trends at the Marcell Experimental Forest. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, FL, pp 15–71

    Chapter  Google Scholar 

  • Smolders AJP, Tomassen HBM, Pijnappel H, Lamers LPM, Roelofs JGM (2001) Substrate-derived CO2 is important in the development of Sphagnum spp. New Phytol 152:325–332

    Article  Google Scholar 

  • Spalding KL, Buchholz BA, Bergman L-E, Druid H, Frisén J (2005) Age written in teeth by nuclear tests. Nature 437:333–334

    Article  Google Scholar 

  • Straková P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences 8:2741–2755

    Article  Google Scholar 

  • Stuiver M, Polach H (1977) Reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt W, Hanson PJ, Iversen CM, Chanton JP (2014) Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J Geophys Res Biogeosci 119:661–675. https://doi.org/10.1002/2013JG002492

    Article  Google Scholar 

  • Thormann MN, Szumigalski AR, Bayley SE (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 19:305–317

    Article  Google Scholar 

  • Trumbore SE, Harden JW (1997) Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J Geophys Res 102:817–830

    Article  Google Scholar 

  • Turunen J, Roulet N, Moore T, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in Eastern Canada. Global Biogeochem Cycles. https://doi.org/10.1029/2003GB002154

    Article  Google Scholar 

  • van der Linden M, Heijmans MMPD, van Geel B (2014) Carbon accumulation in peat deposits from northern Sweden to northern Germany during the last millennium. Holocene 24:1117–1125

    Article  Google Scholar 

  • Verry ES, Janssens J (2011) Geology, vegetation, and hydrology of the S2 bog at the MEF: 12,000 years in Northern Minnesota. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, FL, pp 93–134

    Chapter  Google Scholar 

  • Verry ES, Boelter DH, Päivänen J, Nichols DS, Malterer TJ, Gafni A (2011) Physical properties of organic soils, in peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, FL, pp 135–176

    Chapter  Google Scholar 

  • Vogel JS, Nelson DE, Southon JR (1987) C-14 background levels in an accelerator mass-spectrometry system. Radiocarbon 29:323–333

    Article  Google Scholar 

  • Walker AP, Carter KR, Gu L, Hanson PJ, Malhotra A, Norby RJ, Sebestyen SD, Wullschleger SD, Weston DJ (2017) Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. J Geophys Res Biogeosci 122:1078–1097

    Article  Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402. https://doi.org/10.1029/2010GL043584

    Article  Google Scholar 

  • Zaccone C, Plaza C, Ciavatta C, Miano TM, Shotyk W (2018) Advances in the determination of humification degree in peat since Achard (1786): applications in geochemical and paleoenvironmental studies. Earth Sci Rev 185:163–178

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded through a Whittier College Faculty Research Grant to C.F. and the work of students was supported in part through Exception Funds Granted to C.F. by Whittier College. A portion of this work was supported by Lawrence Livermore National Laboratory, Laboratory Research and Development project 14-ERD-038 (under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-749770). We thank S. Sebestyen and R. Kolka for early feedback on the manuscript, D. Kyllander for helping with site identification and core extraction and T. Sellie for help subsampling the cores, L. Aguayo, M. Voegtle, and J. Lindvai for laboratory work, C. Hicks Pries for her advice on cellulose extraction procedures and carbon accumulation model fitting, N. Jelinski for statistical advice, and M. Tfaily and C. Bauer for support concerning IR techniques. We thank our collaborators at the Marcell Experimental Forest and the US Forest Service Northern Research Station for site access and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fissore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Charles T. Driscoll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fissore, C., Nater, E.A., McFarlane, K.J. et al. Decadal carbon decomposition dynamics in three peatlands in Northern Minnesota. Biogeochemistry 145, 63–79 (2019). https://doi.org/10.1007/s10533-019-00591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00591-4

Keywords

Navigation