Skip to main content

Advertisement

Log in

Anammox-zeolite system acting as buffer to achieve stable effluent nitrogen values

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

For a successful nitrogen removal, Anammox process needs to be established in line with a stable partial nitritation pretreatment unit since wastewater influent is mostly unsuitable for direct treatment by Anammox. Partial nitritation is, however, a critical bottleneck for the nitrogen removal since it is often difficult to maintain the right proportions of NO2-N and NH4-N during long periods of time for Anammox process. This study investigated the potential of Anammox-zeolite biofilter to buffer inequalities in nitrite and ammonium nitrogen in the influent feed. Anammox-zeolite biofilter combines the ion-exchange property of zeolite with the biological removal by Anammox process. Continuous-flow biofilter was operated for 570 days to test the response of Anammox-zeolite system for irregular ammonium and nitrite nitrogen entries. The reactor demonstrated stable and high nitrogen removal efficiencies (approximately 95 %) even when the influent NO2-N to NH4-N ratios were far from the stoichiometric ratio for Anammox reaction (i.e. NO2-N to NH4-N ranging from 0 to infinity). This is achieved by the sorption of surplus NH4-N by zeolite particles in case ammonium rich influent came in excess with respect to Anammox stoichiometry. Similarly, when ammonium-poor influent is fed to the reactor, ammonium desorption took place due to shifts in ion-exchange equilibrium and deficient amount were supplied by previously sorbed NH4-N. Here, zeolite acted as a preserving reservoir of ammonium where both sorption and desorption took place when needed and this caused the Anammox-zeolite system to act as a buffer system to generate a stable effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abma WR, Schultz CE, Mulder JW, van der Star WRL, Strous M, Tokutomi T, van Loosdrecht MCM (2007) Full-scale granular sludge Anammox process. Water Sci Technol 55(8–9):27–33. doi:10.2166/wst.2007.238

    Article  CAS  PubMed  Google Scholar 

  • Akgul D, Aktan CK, Yapsakli K, Mertoglu B (2013) Treatment of landfill leachate using UASB-MBR-SHARON-Anammox configuration. Biodegradation 24(3):399–412. doi:10.1007/s10532-012-9597-y

    Article  CAS  PubMed  Google Scholar 

  • Aktan CK, Yapsakli K, Mertoglu B (2012) Inhibitory effects of free ammonia on Anammox bacteria. Biodegradation 23(5):751–762. doi:10.1007/s10532-012-9550-0

    Article  CAS  PubMed  Google Scholar 

  • Almutairi A, Weatherley LR (2015) Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns. J Environ Manage 160:128–138. doi:10.1016/j.jenvman.2015.05.033

    Article  CAS  PubMed  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater

  • Cho S, Fujii N, Lee T, Okabe S (2011) Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technol 102(2):652–659. doi:10.1016/j.biortech.2010.08.031

    Article  CAS  Google Scholar 

  • Ćurković L, Cerjan-Stefanović Š, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31(6):1379–1382. doi:10.1016/S0043-1354(96)00411-3

    Article  Google Scholar 

  • Dimova G, Mihailov G, Tzankov T (1999) Combined filter for ammonia removal—part I: minimal zeolite contact time and requirements for desorption. Water Sci Technol 39(8):123–129. doi:10.1016/S0273-1223(99)00194-8

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Fernandez I, Vazquez-Padin JR, Mosquera-Corral A, Campos JL, Mendez R (2008) Biofilm and granular systems to improve Anammox biomass retention. Biochem Eng J 42(3):308–313. doi:10.1016/j.bej.2008.07.011

    Article  CAS  Google Scholar 

  • Foglar L, Gasparac D (2013) Continuous-flow biological denitrification with zeolite as support for bacterial growth. Desalin Water Treat 51(37–39):7157–7165. doi:10.1080/19443994.2013.792162

    Article  CAS  Google Scholar 

  • Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189(1–2):141–149. doi:10.1016/j.jhazmat.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  • Guerrero L, Van Diest F, Barahona A, Montalvo S, Borja R (2013) Influence of the type and source of inoculum on the start-up of anammox sequencing batch reactors (SBRs). J Environ Sci Health 48(10):1301–1310. doi:10.1080/10934529.2013.777268

    Article  CAS  Google Scholar 

  • Han RP, Ding DD, Xu YF, Zou WH, Wang YF, Li YF, Zou L (2008) Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource Technol 99(8):2938–2946. doi:10.1016/j.biortech.2007.06.027

    Article  CAS  Google Scholar 

  • Hauser B (1996) Practical manual of wastewater chemistry. CRC Press, New York

    Google Scholar 

  • He Y, Zhou GM, Zhao YC (2007) Nitrification with high nitrite accumulation for the treatment of “Old” landfill leachates. Environ Eng Sci 24(8):1084–1094. doi:10.1089/ees.2006.0250

    Article  CAS  Google Scholar 

  • Hedstrom A, Amofah LR (2008) Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems. J Environ Eng Sci 7(1):53–61. doi:10.1139/S07-029

    Article  Google Scholar 

  • Hu ZY, Lotti T, van Loosdrecht M, Kartal B (2013) Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnol Lett 35(8):1145–1154. doi:10.1007/s10529-013-1196-4

    Article  CAS  PubMed  Google Scholar 

  • Jetten MSM, Cirpus I, Kartal B, van Niftrik L, van de Pas-Schoonen KT, Sliekers O, Haaijer S, van der Star W, Schmid M, van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Kuenen JG, den Camp HO, Strous M (2005) 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc T 33:119–123

    Article  CAS  Google Scholar 

  • Kartal B, Kuenen JG, van Loosdrecht MCM (2010) Sewage treatment with Anammox. Science 328(5979):702–703. doi:10.1126/science.1185941

    Article  CAS  PubMed  Google Scholar 

  • Lahav O, Green M (1998) Ammonium removal using ion exchange and biological regeneration. Water Res 32(7):2019–2028. doi:10.1016/S0043-1354(97)00453-3

    Article  CAS  Google Scholar 

  • Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM (2014) Physiological and kinetic characterization of a suspended cell anammox culture. Water Res 60:1–14. doi:10.1016/j.watres.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  • Lotti T, Kleerebezern R, Abelleira-Pereira JM, Abbas B, van Loosdrecht MCM (2015) Faster through training: the anammox case. Water Res 81:261–268. doi:10.1016/j.watres.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  • Miladinovic N, Weatherley LR (2008) Intensification of ammonia removal in a combined ion-exchange and nitrification column. Chem Eng J 135(1–2):15–24. doi:10.1016/j.cej.2007.02.030

    Article  CAS  Google Scholar 

  • Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16(3):177–183

    Article  CAS  Google Scholar 

  • Qiu LP, Zhang SB, Wang GW, Du MA (2010) Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media. Bioresour Technol 101(19):7245–7251. doi:10.1016/j.biortech.2010.04.034

    Article  CAS  PubMed  Google Scholar 

  • Semmens MJ, Goodrich RR (1977) Biological regeneration of ammonium-saturated clinoptilolite. 1. Initial observations. Environ Sci Technol 11(3):255–259. doi:10.1021/es60126a010

    Article  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biot 50(5):589–596

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400(6743):446–449

    Article  CAS  PubMed  Google Scholar 

  • Tang CJ, Zheng P, Wang CH, Mahmood Q, Zhang JQ, Chen XG, Zhang L, Chen JW (2011) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45(1):135–144. doi:10.1016/j.watres.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  • van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41(18):4149–4163. doi:10.1016/j.watres.2007.03.044

    Article  PubMed  Google Scholar 

  • van Dongen U, Jetten MSM, van Loosdrecht MCM (2001) The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater. Water Sci Technol 44(1):153–160

    PubMed  Google Scholar 

  • van Kempen R, Mulder JW, Uijterlinde CA, Loosdrecht MCM (2001) Overview: full scale experience of the SHARON (R) process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 44(1):145–152

    PubMed  Google Scholar 

  • Weatherley LR, Miladinovic ND (2004) Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res 38(20):4305–4312. doi:10.1016/j.waters.2004.08.026

    Article  CAS  PubMed  Google Scholar 

  • Yang L (1997) Investigation of nitrification by co-immobilized nitrifying bacteria and zeolite in a batchwise fluidized bed. Water Sci Technol 35(8):169–175. doi:10.1016/S0273-1223(97)00164-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Marmara University Scientific Research Committee-BAPKO (Project No: FEN-A-060510-0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozet Yapsakli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapsakli, K., Aktan, C.K. & Mertoglu, B. Anammox-zeolite system acting as buffer to achieve stable effluent nitrogen values. Biodegradation 28, 69–79 (2017). https://doi.org/10.1007/s10532-016-9778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-016-9778-1

Keywords

Navigation