Skip to main content

Advertisement

Log in

Extremes of forest–urban gradient offer some refuge for alien orchid invasion

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Urbanization decreases the abundance of native species, which may enable exotics to experience enemy release in urban areas, enhancing their invasive capacity. The invasive autogamous orchid, Spathoglottis plicata, acquires some biotic resistance in Puerto Rico from a native orchid weevil specialist, Stethobaris polita. The distribution of S. polita along an urbanization gradient may affect the distribution of S. plicata and its future spread. To determine the effect of land cover on both species and the impact of S. polita on the spread of S. plicata, we modeled the distribution of the interaction between the two species and additionally assessed weevil abundance and the damage they do in different land cover types and localities. Land cover was the most important predictor of distribution for both species. S. plicata occurs in forests, pastures, and urban areas; however, S. polita is largely absent from urban areas, including urban forests, and along rivers within wet forests. This distribution likely reflects the dispersal ability of S. plicata, in addition to potential human intervention, and the inability of S. polita to penetrate or become established within the urban matrix. Thus, within the invasive range of S. plicata in Puerto Rico, geographical heterogeneity in acquired interactions is expected to result in higher seed production within areas of enemy release. The orchid is likely to spread more rapidly in urban forests, as well as along forest rivers, where S. polita is sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelleira Martínez OJ, Rodríguez MA, Rosario I, Soto N, López A, Lugo AE (2010) Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New For 39:1–18

    Article  Google Scholar 

  • Ackerman JD (2007) Invasive orchids: weeds we hate to love? Lankesteriana 7:19–21

    Google Scholar 

  • Ackerman JD (2012) Orchidaceae. In: Acevedo P, Strong M (eds) Catalogue of seed plants of the West Indies. Smithsonian contributions to botany, vol 98. pp 622–667

    Google Scholar 

  • Ackerman JD, Collaborators (2014) Orchid flora of the Greater Antilles. NY Bot Garden 109:1–625

    Google Scholar 

  • Ackerman JD, Falcón W, Molinari J, Vega C, Espino I, Cuevas AA (2014) Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico. Biol Invasions 16:2435–2447. https://doi.org/10.1007/s10530-014-0676-3

    Article  Google Scholar 

  • Ackerman JD, Tremblay RL, Rojas Sandoval J, Hernández Figueroa E (2017) Biotic resistance in the tropics: patterns of plant invasions within an island. Biol Invasions 19:315–328. https://doi.org/10.1007/s10530-016-1281-4

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30. https://doi.org/10.1046/j.1523-1739.2003.02365.x

    Article  Google Scholar 

  • Allison PD, SAS Institute (2012) Logistic regression using SAS: theory and application, 2nd edn. SAS Institute, Cary, North Carolina

    Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178. https://doi.org/10.2193/2009-367

    Article  Google Scholar 

  • Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL (2016) Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am J Bot 103:1880–1889

    Article  PubMed  Google Scholar 

  • Bergman E, Ackerman JD, Thompson J, Zimmerman JK (2006) Land-use history affects the distribution of the saprophytic orchid Wullschlaegelia calcarata in Puerto Rico’s tabonuco forest. Biotropica 38:492–499. https://doi.org/10.1111/j.1744-7429.2006.00167.x

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. https://doi.org/10.1016/j.tree.2011.03.023

    Article  Google Scholar 

  • Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8:93–106. https://doi.org/10.1007/s11252-005-1421-6

    Article  Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458. https://doi.org/10.1034/j.1600-0706.2002.970316.x

    Article  Google Scholar 

  • Crustinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968. https://doi.org/10.1126/science.1128326

    Article  CAS  Google Scholar 

  • Daehler CC (1998) The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol Conserv 84:167–180

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  • Damon A, Valle-More J (2008) Retrospective spatial analysis of the pollination of two miniature epiphytic orchids with different pollination strategies in a coffee plantation in Soconusco, Chiapas, Mexico. Bot J Linn Soc 158:448–459

    Article  Google Scholar 

  • Denslow JS, Space JC, Thomas PA (2009) Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica 41:162–170

    Article  Google Scholar 

  • Denys C, Schmidt H (1998) Insect communities on experimental mugwort (Artemisia vulgaris L.) plots along an urban gradient. Oecologia 113:269–277. https://doi.org/10.1007/s004420050378

    Article  CAS  PubMed  Google Scholar 

  • Dinno A (2015) Nonparametric pairwise comparisons in independent groups using Dunn’s test. Stata J 15:292–300

    Article  Google Scholar 

  • Ewel JJ, Whitmore TN (1973) The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest service research paper ITF-18. Institute of Tropical Forestry, Forest Service, U.S. Department of Agriculture

  • Fagan WF, Lewis M, Neubert MG, Aumann C, Apple JL, Bishop JG (2005) When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens. Am Nat 166:669–685. https://doi.org/10.2307/3491230

    Article  PubMed  Google Scholar 

  • Falcón W, Ackerman JD, Tremblay RL (2017) Quantifying how acquired interactions with native and invasive insects influence population growth rates of a non-indigenous plant. Biol Invas 19:895–911. https://doi.org/10.1007/s10530-016-1318-8

    Article  Google Scholar 

  • Fekete R, Nagy T, Bódis J, Biró E, Löki V, Süveges K, Takács A, Tökölyi J, Molnár A (2017) Roadside verges as habitats for endangered lizard-orchids (Himantoglossum spp.): ecological traps or refuges? Sci Total Environ 607:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665. https://doi.org/10.1126/science.1098982

    Article  CAS  PubMed  Google Scholar 

  • Global Compendium of Weeds (2011) Hawaii ecosystem risk project. http://www.hear.org/gcw/. Accessed 2018 June 3

  • Gomez-Gomez F, Rodriguez-Martinez J, Santiago M (2014) Hydrology of Puerto Rico and the outlying islands of Vieques, Culebra, and Mona. U.S. Department of the Interior & U.S. Geological Survey, Reston

    Google Scholar 

  • Goosem S (2009) Invasive weeds in the wet tropics. In: Stork NE, Turton SM (eds) Living in a dynamic tropical forest landscape. Blackwell, Oxford, pp 307–321

    Chapter  Google Scholar 

  • Gould WA, Alarcon C, Fevold B, Jimenez ME, Martinuzzi S, Potts G, Quinones M, Mariano S, Ventosa E (2008) The Puerto Rico gap analysis project volume 1: land cover, vertebrate species, distributions, and land stewardship, vol 1. USDA Forest Service International Institute of Tropical Forestry, Río Piedras

    Book  Google Scholar 

  • Horvitz CC, Pascarella JB, McMann S, Freedman A, Hofstetter RH (1998) Functional roles of invasive non-indigenous plants in hurricane-affected subtropical hardwood forests. Ecol Appl 8:947–974. https://doi.org/10.2307/2640954

    Article  Google Scholar 

  • Huang D, Su Z, Zhang R, Koh LP (2010) Degree of urbanization influences the persistence of Dorytomus weevils (Coleoptera: Curculionoidae) in Beijing, China. Landsc Urban Plan 96(3):163–171. https://doi.org/10.1016/j.landurbplan.2010.03.004

    Article  Google Scholar 

  • Jersáková J, Kindlmann P, Střítieský M (2002) Population dynamics of Orchis morio in the Czedh Republic under human influence. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid popoulations. Backhuys Publishers, Leiden, pp 209–224

    Google Scholar 

  • Jolliffe K (2010) Epiphytic orchids of the Seychelles. Kapisen 10(10):6–8

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. https://doi.org/10.1016/s0169-5347(02)02499-0

    Article  Google Scholar 

  • Kennaway T, Helmer EJ (2007) The forest types and ages cleared for land development in Puerto Rico. GISci Remote Sens 44:356–382

    Article  Google Scholar 

  • Leong TM, Wee YC (2013) Observations of pollination in the pigeon orchid, Dendrobium crumenatum Swartz (Orchidaceae) in Singapore. Nat Singap 6:91–96

    Google Scholar 

  • Lieurance D, Cipollini D (2012) Damage levels from arthropod herbivores on Lonicera maackii suggest enemy release in its introduced range. Biol Invas 14:863–873. https://doi.org/10.1007/s10530-011-0123-7

    Article  Google Scholar 

  • Light MHS, MacConaill M (2011) Potential impact of insect herbivores on orchid conservation. Eur J Environ Sci 1:115–124. https://doi.org/10.14712/23361964.2015.54

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. https://doi.org/10.1111/j.0906-7590.2005.03957

    Article  Google Scholar 

  • Löki V, Tökölyi J, Süveges K, Lovas-Kiss Á, Hürkan K, Sramkó G, Molnár A (2015) The orchid flora of Turkish graveyards: a comprehensive field survey. Willdenowia 45:231–243

    Article  Google Scholar 

  • Louda SM (1982) Distribution ecology: variation in plant recruitment over a gradient in relation to insect seed predation. Ecol Monogr 52:25–41. https://doi.org/10.2307/2937343

    Article  Google Scholar 

  • Luer CA (1972) The native orchids of Florida. New York Botanical Garden, New York

    Google Scholar 

  • McCormick M, Jacquemyn H (2013) What constrains the distribution of orchid populations? New Phytol 202:392–400. https://doi.org/10.1111/nph.12639

    Article  Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835. https://doi.org/10.1603/0013-8746(2000)093%5b0825:eouaar%5d2.0.co;2

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890. https://doi.org/10.1641/0006-3568(2002)052%5b0883:ubac%5d2.0.co;2

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • Murren CJ, Ellison AM (1998) Seed dispersal characteristics of Brassavola nodosa (Orchidaceae). Am J Bot 85:675–680

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Peñuelas J (2008) Gardening and urban landscaping: significant players in global change. Trends Plant Sci 13:60–65

    Article  CAS  Google Scholar 

  • O’Brien CW, Turnbow RH Jr. (2011) An annotated list of Curculionidae (Coleoptera) of Dominica (excluding Scolytinae and Platypodidae). Insecta Mundi 0179:1–31

    Google Scholar 

  • Pemberton RW, Collins TM, Koptur S (2008) An Asian orchid, Eulophia graminea (Orchidaceae: Cymbidieae), naturalizes in Florida. Lankesteriana 8:5–14

    Google Scholar 

  • Phillips RD, Peakall R, Hutchinson MF, Linde CC, Xu T, Dixon KW, Hopper SD (2014) Specialized ecological interactions and plant species rarity: the role of pollinators and mycorrhizal fungi across multiple spatial scales. Biol Conserv 169:285–295. https://doi.org/10.1016/j.biocon/2013.11.027

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Schapire RE (2018) Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 30 July 2018

  • Prakash N, Lee-Lee A (1973) Life history of a common Malaysian orchid Spathoglottis plicata. Phytomorphology 23:9–17

    Google Scholar 

  • Puerto Rico GAP Analysis Project (2006) PRGAP landcover. USDA Forest Service, International Institute of Tropical Forestry, Río Piedras

    Google Scholar 

  • Pyšek P, Richardson DM (2008) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, ecological studies, vol 193. Springer, Berlin, pp 97–125

    Chapter  Google Scholar 

  • Pyšek P, Varošik V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Nat Acad Sci USA 107:12157–12162. https://doi.org/10.1073/pnas.1002314107

    Article  PubMed  Google Scholar 

  • Recart W, Ackerman JD, Cuevas AA (2013) There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil. Biol Invasions 15:283–293. https://doi.org/10.1007/s10530-012-0283-0

    Article  Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113

    Article  Google Scholar 

  • Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clut MN (eds) Turning the tide: the eradication of invasive species. IUCN, Gland, pp 249–253

    Google Scholar 

  • Richardson DM (2011) Invasion science. The roads travelled and the roads ahead. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 397–407

    Google Scholar 

  • Rojas-Sandoval J, Acevedo-Rodríguez P (2015) Naturalization and invasion of alien plants in Puerto Rico and the Virgin Islands. Biol Invasions 17:149–163. https://doi.org/10.1007/s10530-014-0712-3

    Article  Google Scholar 

  • Rojas-Sandoval J, Tremblay RL, Acevedo-Rodríguez P, Díaz-Soltero H (2017) Invasive plant species of the West Indies: geographical, ecological, and floristic insights. Ecol Evol 7:4522–4533. https://doi.org/10.1002/ece3.2984

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. https://doi.org/10.1016/s0169-5347(02)02495-3

    Article  Google Scholar 

  • Shefferson RP, Kull T, Kadri T (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164

    Article  PubMed  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, PascalM PP, Sousa R, Rabacchi E, Vilá M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  Google Scholar 

  • Su Z, Zhang R, Qiu J (2011) Decline in the diversity of willow trunk-dwelling weevils (Coleoptera: Curculionoidea) as a result of urban expansion in Beijing, China. J Insect Conserv 15:367–377. https://doi.org/10.1007/s10841-010-9310-6

    Article  Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci 98:1095–1100. https://doi.org/10.1073/pnas.98.3.1095

    Article  CAS  PubMed  Google Scholar 

  • Suárez JP, Eguigueren JS, Herrera P, Jost L (2016) Do mycorhizal fungi drive speciation in Teagueia (Orchidaceae) in the upper Pastaza watershed of Ecuador? Symbiosis 69:161–168. https://doi.org/10.1007/s13199-016-0399-6

    Article  Google Scholar 

  • Thompson S, Wright F (1995) Spathoglottis plicata (Orchidacceae): new to Dominica, another record from the Lesser Antilles. Caribb J Sci 31:148–149

    Google Scholar 

  • Turner K, Lefler L, Freedman B (2005) Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landsc Urban Plan 71(2–4):191–206. https://doi.org/10.1016/j.landurbplan.2004.03.003

    Article  Google Scholar 

  • Václavíik T, Meetemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wilfredo Falcón for assistance with Maxent and data collection; Raymond Tremblay for assistance with the GLM; Kai Griebenow for localities of urban populations; and Christine Folks for assistance in the field. Funding was provided by a grant from the National Science Foundation-Research Experience for Undergraduates program (DBI-1559679, A. Ramírez, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia G. Soifer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soifer, L.G., Ackerman, J.D. Extremes of forest–urban gradient offer some refuge for alien orchid invasion. Biol Invasions 21, 2143–2157 (2019). https://doi.org/10.1007/s10530-019-01963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-01963-5

Keywords

Navigation