Skip to main content
Log in

Interference in quorum sensing and virulence of the phytopathogen Pseudomonas syringae pv. passiflorae by Bacillus and Variovorax species

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Pathogenic bacteria often engage in a form of cell-to-cell communication termed quorum sensing (QS) to coordinate the expression of multiple virulence factors. Therefore, interference of QS has potential as a means of controlling bacterial-mediated plant diseases. Accordingly, this study was aimed at: (1) identifying QS signals produced by the phytopathogen, Pseudomonas syringae pv. passiflorae, and (2) evaluating interference in QS and virulence of the pathogen by putative N-acyl homoserine lactone (AHL)-degrading Bacillus and Variovorax species as a biocontrol strategy. Detection of AHLs using the biosensor strain and high-resolution mass spectroscopy suggested that P. syringae pv. passiflorae produced N-tetradecanoyl homoserine lactone and N-hexanoyl homoserine lactone as quorum-sensing signal molecules. Evaluation of putative AHL-degrading bacteria as biocontrol agents, through a series of inhibition assays (inhibition of motility, biofilm and virulence factors), suggested that bacteria which targets AHLs could be used to control P. syringae pv. passiflorae. We further demonstrated that putative AHL-degrading Bacillus and Variovorax species prevented hypersensitivity in tomato plants by P. syringae pv. passiflorae. Taken together, these results indicated that putative AHL-degrading bacteria were potential biocontrol agents against P. syringae pv. passiflorae and reinforced the idea that disrupting QS and associated virulence factors could be an effective method in controlling plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9:e02331-17

  • Alagarasan G, Dubey M, Aswathy KS, Chandel G (2017) Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front Plant Sci 8:775

    Article  PubMed  PubMed Central  Google Scholar 

  • Anandham R, Premalatha N, Jee HJ, Weon HY, Kwon SW, Krishnamoorthy R, Indira Gandhi P, Kim YK, Gopal NO (2015) Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials. Int J Recycl Org Waste Agricult 4:279–289

    Article  Google Scholar 

  • Anbazhagan D, Mansor M, Yan GO, Md Yusof MY, Hassan H, Sekaran SD (2012) Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS ONE 7(7):e36696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baigent NL, Starr MP (1963) Bacterial grease-spot disease of passion-fruit. New Zeal J Agr Res 6:24–38

    Article  Google Scholar 

  • Braun-Kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathol 90:368–375

    Article  CAS  Google Scholar 

  • Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, Koh CL, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 8:11–51

    Google Scholar 

  • Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Ma A, Zhuang X, He X, Zhuang G (2016) N-(3-oxo-hexanoyl)-homoserine lactone has a critical contribution to the quorum-sensing-dependent regulation in phytopathogen Pseudomonas syringae pv. tabaci 11528. FEMS Microbiol Lett 363:265

  • Cheng F, Ma A, Luo J, Zhuang X, Zhuang G (2017) N-acylhomoserine lactone-regulation of genes mediating motility and pathogenicity in Pseudomonas syringae pathovar tabaci 11528. MicrobiologyOpen 6:e440

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  CAS  PubMed  Google Scholar 

  • Christiaen SEA, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog Dis 70:271–279

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep 4:5446

  • D’Angelo-Picard C, Faure D, Penot I, Dessaux Y (2005) Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808

    Article  CAS  PubMed  Google Scholar 

  • Delshad ST, Hassan SS, Bossier SP (2018) Effect of quorum quenching bacteria on growth, virulence factors and biofilm formation of Yersinia ruckeri in vitro and an in vivo evaluation of their probiotic effect in rainbow trout. J Fish Dis 41:1429–1438

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong SH, Frane ND, Christensen QH, Greenberg EP, Nagarajan R, Nair SK (2017) Molecular basis for the substrate specificity of quorum signal synthases. Proc Natl Acad Sci USA 114:9092–9097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filho LR, de Souza RM, Ferreira A, Quecin MCE, Alves E, de Azevedo JL (2013) Biocontrol activity of Bacillus against a GFP-marked Pseudomonas syringae pv. tomato on tomato phylloplane. Australasian Plant Pathol 42:643–651

    Article  Google Scholar 

  • Fischer IH, Rezende JAM (2008) Diseases of passion flower (Passiflorae spp.). Pest Technol 2:1–19

    Google Scholar 

  • Fuente MD, Vidal JM, Miranda CD, González G, Urrutia H (2013) Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48. Springer Plus 2:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111:28–67

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105:289–305

    Article  PubMed  Google Scholar 

  • Garge SS, Nerurkar AS (2016) Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS ONE 11(12):e0167344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geske GD, O’Neill JC, Blackwell HE (2008) Expanding dialogues: from natural autoinducers to nonnatural analogues that modulate quorum sensing in gram-negative bacteria. Chem Soc Rev 37:1432–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goo E, Kang Y, Kim H, Hwang I (2010) Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. J Proteome Res 9:3184–3199

    Article  CAS  PubMed  Google Scholar 

  • Hardman AM, Stewart GS, Williams P (1998) Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie Van Leeuwenhoek 74:199–210

    Article  CAS  PubMed  Google Scholar 

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16:316–329

    Article  PubMed  Google Scholar 

  • Hussain MB, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH (2008) The acyl-homoserinelactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 190:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Ichinose Y, Fumiko T, Takafumi M (2013) Pathogenicity and virulence factors of Pseudomonas syringae. J General Plant Pathol 79:285–296

    Article  CAS  Google Scholar 

  • Inoue T, Shingaki R, Fukui K (2008) Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett 281:81–86

    Article  CAS  PubMed  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signalling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65

    Article  CAS  PubMed  Google Scholar 

  • Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 103:5983–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane JR, Messéan A, Morris CEJ (2015) Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. Gen Plant Pathol 81:331–350

    Article  Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw SJ, Lai HC, Ho SW, Luh KT, Wang WB (2000) Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol. J Med Microbiol 49:725–731

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee A, Singh S, Maiti MK (2018) Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 200:355–369

    Article  CAS  PubMed  Google Scholar 

  • Musthafa KS, Sivamaruthi BS, Pandian SK, Ravi AV (2012) Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenylacetic acid. Curr Microbiol 65:475–480

    Article  CAS  PubMed  Google Scholar 

  • Noorashikin MN, Li LY, Karim M, Daud HM, Natrah FMI (2016) Screening and identification of quorum sensing degraders from live feed Artemia. J Environ Biol 37:811–816

    CAS  PubMed  Google Scholar 

  • Pande GS, Natrah FM, Flandez AV, Kumar U, Niu Y, Bossier P, Defoirdt T (2015) Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae. Appl Microbiol Biotechnol 99:10805–10813

    Article  CAS  PubMed  Google Scholar 

  • Patel HK, Ferrante P, Covaceuszach S, Lamba D, Scortichini M, Venturi V (2014) The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three luxR solos. PLoS ONE 9(1):e87862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pell EJ, Lukezic FL, Levine RG, Weissberger WC (1977) Response of soybean foliage to reciprocal chellanges by ozone and a hypersensitive response inducing Pseudomonad. Phytopathol 67:1342–1345

    Article  Google Scholar 

  • Pfeilmeier S, Caly DL, Malone JG (2016) Bacterial pathogenesis of plants: future challenges from a microbial perspective: challenges in bacterial molecular plant pathology. Mol Plant Pathol 17:1298–1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    Article  CAS  PubMed  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    Article  CAS  PubMed  Google Scholar 

  • Rajesh PS, Ravishankar Rai V (2014) Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol Res 169:561–569

    Article  CAS  PubMed  Google Scholar 

  • Sari PE, Rusmana Iman, Akhdiya Alina (2016) AHL-lactonase characteristics of Bacillus thuringiensis SGT3 g and its effectiveness in inhibiting pathogenicity of Dickeya dadantii. Malaysian J Microbiol 12:315–321

    CAS  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd RW, Lindow SE (2009) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75:45–53

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoblom S, Brader G, Koch G, Palva ET (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60:1474–1489

    Article  CAS  PubMed  Google Scholar 

  • Sunder AV, Utari PD, Ramasamy S, van Merkerk R, Quax W, Pundle A (2017) Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 101:2383–2395

    Article  CAS  PubMed  Google Scholar 

  • Ulrich RL (2004) Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 70:6173–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb Ecol 41:132–139

    PubMed  Google Scholar 

  • Wang J, Quan C, Wang X, Zhao P, Fan S (2011) Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microb Biotechnol 4:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicaksono WA, Jones EE, Casonato S, Hayley JM, Ridgway J (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control 116:103–112

    Article  Google Scholar 

  • Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Ministry of Human Resource Development, Government of India under grant no. SERB/LS-737/2012. We are grateful to Prof. Shai Morin, Department of Entomology (The Hebrew University of Jerusalem) for his guidance and support in GLM statistical analysis. Moreover, we thank the editors and the anonymous reviewers for their patient guidance and critical comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangasamy Anandham.

Additional information

Handling Editor: Fouad Daayf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, P.A., Krishnamoorthy, R., Kwon, SW. et al. Interference in quorum sensing and virulence of the phytopathogen Pseudomonas syringae pv. passiflorae by Bacillus and Variovorax species. BioControl 64, 423–433 (2019). https://doi.org/10.1007/s10526-019-09932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-019-09932-6

Keywords

Navigation