Skip to main content
Log in

Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Longevity of a species is a multifactorial quantitative trait influenced by genetic background, sex, age and environment of the organism. Extended longevity phenotypes (ELP) from experimental evolution in the laboratory can be used as model systems to investigate the mechanisms underlying aging and senescence. ELPs of Drosophila are correlated with various life history attributes such as resistance to environmental stressors (starvation, desiccation, cold and paraquat), developmental time, biochemical defenses, etc. The association between oxidative stress resistance and longevity is not clear and ELPs offer an opportunity to examine the role of oxidative stress resistance in longevity. Here, we have investigated the hypothesis that enhanced oxidative stress resistance and elevated antioxidant defense system play a positive role in longevity using an ELP of Drosophila melanogaster. An ELP of D. melanogaster isolated and characterized in our laboratory through artificial selection (inbred laboratory strain of Oregon K) is employed in this study. Our ELP, named as long lifespan (LLS) flies, shows marked extension in lifespan when compared to the progenitor population (normal lifespan, NLS) and makes a suitable model to study the role of mitochondrial genome in longevity because of its least heterogeneity. In this study, sensitivity to ethanol with age was employed as a measure of resistance to oxidative stress in NLS and LLS flies. Effect of age and oxidative stress on longevity was examined by employing NLS and LLS flies of different age groups against ethanol-induced oxidative stress. Results show that the lower mortality against ethanol was associated with enhanced oxidative stress resistance, higher antioxidant defenses, lower reactive oxygen species (ROS) levels, enhanced alcohol dehydrogenase activity and better locomotor ability attributes of LLS flies. In addition, age-related changes like locomotor impairments, decreased antioxidant defenses, higher ROS levels and sensitivity to oxidative stress were delayed in LLS flies when compared to NLS. Our study supports the hypothesis that higher oxidative stress resistance and enhanced antioxidant defenses are significant factors in extending longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 05:121–125

    Article  Google Scholar 

  • Archer CR, Sakaluk SK, Selman C, Royle NJ, Hunt J (2013) Oxidative stress and the evolution of sex differences in lifespan and ageing in the decorated cricket, Gryllodes sigillatus. Evolution 67:620–634

    Article  CAS  PubMed  Google Scholar 

  • Arking R (1987) Successful selection for increased longevity in Drosophila: analysis of the survival data and presentation of a hypothesis on the genetic regulation of longevity. Exp Gerontol 22:199–220

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Buck S, Berrios A, Dwyer S, Baker GT 3rd (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Soliman S, Saraiya A, Buck S, Vettraino J, Sathrasala K (2000a) Identical longevity phenotypes are characterized by different patterns of gene expression and oxidative damage. Exp Gerontol 35:353–373

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Soliman S, Saraiya A, Buck S, Vettraino J, Sathrasala K, Wehr N, Levine RL (2000b) Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol 35:167–185

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Buck S, Hwangbo D-S, Lane M (2002) Metabolic alterations and shift in energy allocations are corequisites for the expression of extended longevity genes in Drosophila. Ann N Y Acad Sci 959:251–262

    Article  CAS  PubMed  Google Scholar 

  • Awofala AA, Davies JA, Jones S (2012) Functional roles for redox genes in ethanol sensitivity in Drosophila. Funct Integr Genom 12:305–315

    Article  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    Article  CAS  PubMed  Google Scholar 

  • Black MJ, Brandt RB (1974) Spectrofluorometric analysis of hydrogen peroxide. Anal Biochem 1:246–254

    Article  Google Scholar 

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18:789–803

    Article  CAS  PubMed  Google Scholar 

  • Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B (2010) Ethanol-induced oxidative stress: basic knowledge. Genes Nutr 5:101–109

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81:177–187

    Article  CAS  PubMed  Google Scholar 

  • David JR, Bocquet C, Arens M-F, Fouillet P (1976) Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alcohols: utilization of an ADH-null mutant. Biochem Genet 14:989–997

    Article  CAS  PubMed  Google Scholar 

  • Deepashree S, Haddadi M, Ramesh SR, Shivanandappa T (2012) Isolation of a long lifespan strain of Drosophila melanogaster. Drosoph Inf Serv 95:101–103

    Google Scholar 

  • Deepashree S, Shivanandappa T, Ramesh SR (2017) Life history traits of an extended longevity phenotype of Drosophila melanogaster. Curr Aging Sci 10:224–238

    Article  CAS  PubMed  Google Scholar 

  • Deepashree S, Shivanandappa T, Ramesh SR (2018) Is longevity a heritable trait? evidence for non-genomic influence from an extended longevity phenotype of Drosophila melanogaster. Curr Aging Sci 11:24–32

    Article  CAS  PubMed  Google Scholar 

  • Delcour J (1969) A rapid and efficient method of egg collecting. Drosoph Inf Serv 44:133–134

    Google Scholar 

  • Devineni AV, McClure KD, Guarnieri DJ, Corl AB, Wolf FW, Eddison M, Heberlein U (2011) The genetic relationships between ethanol preference, acute ethanol sensitivity and ethanol tolerance in Drosophila melanogaster. Fly 5:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudas SP, Arking R (1995) Coordinate upregulation of the antioxidant gene activities is associated with the delayed onset of senescence in a long lived strain of Drosophila. J Gerontol Biol Sci 50A:B117–B127

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of cholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  • Fry JD, Bahnck CM, Mikucki M, Phadnis N, Slattery WC (2004) Dietary ethanol mediates selection on aldehyde dehydrogenase activity in Drosophila melanogaster. Integr Comp Biol 44:275–283

    Article  CAS  PubMed  Google Scholar 

  • Geer BW, McKechnie SW, Bentley MM, Oakeshott JG, Quinn EM, Langevin ML (1988) Induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster. J Nutr 118:398–407

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri DJ, Heberlein U (2003) Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 54:199–228

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hercus MJ, Loeschcke V, Rattan SI (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AA, Parsons PA (1989) Selection for increased desiccation resistance in Drosophila melanogaster: additive genetic control and correlated responses for other stresses. Genetics 122:837–845

    Google Scholar 

  • Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR (2015) Modulatory effect of Decalepis hamiltonii on ethanol-induced toxicity in transgenic Drosophila model of Parkinson’s disease. Neurochem Int 80:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2015) Redox theory of aging. Redox Biol 5:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB, Kowald A (2012) The free-radical theory of ageing–older, wiser and still alive: modeling positional effects of the primary targets of ROS reveals new support. BioEssays 34:692–700

    Article  CAS  PubMed  Google Scholar 

  • Kuether K, Arking R (1999) Drosophila selected for extended longevity are more sensitive to heat shock. Age 22:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liochev SI (2015) Which is the most significant cause of aging? Antioxidants 4:793–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38:996–1003

    Article  PubMed  Google Scholar 

  • Marklund SL, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • McKenzie JA, Parsons PA (1972) Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia 10:373–388

    Article  CAS  PubMed  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. H. K. Lewis and Company, London

    Google Scholar 

  • Mockett RJ, Orr WC, Rahmandar JJ, Sohal BH, Sohal RS (2001) Antioxidant status and stress resistance in long- and short-lived lines of Drosophila melanogaster. Exp Gerontol 36:441–463

    Article  CAS  PubMed  Google Scholar 

  • Montooth KL, Siebenthall KT, Clark AG (2006) Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. J Exp Biol 209:3837–3850

    Article  CAS  PubMed  Google Scholar 

  • Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Niveditha S, Deepashree S, Ramesh SR, Shivanandappa T (2017) Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B 187:899–909

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Paaby AB, Schmidt PS (2009) Dissecting the genetics of longevity in Drosophila melanogaster. Fly (Austin) 3:29–38

    Article  CAS  Google Scholar 

  • Partridge L, Barton NH (1993) Optimality, mutation and the evolution of ageing. Nature 362:305–311

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Fowler K (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46:76–91

    Article  PubMed  Google Scholar 

  • Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Testing the ‘free radical theory of aging’ hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6:395–404

    Article  CAS  PubMed  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Article  PubMed  Google Scholar 

  • Rose MR, Vu LN, Park SU, Graves JL Jr (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27:241–250

    Article  CAS  PubMed  Google Scholar 

  • Rothenfluh A, Heberlein U (2002) Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr Opin Neurobiol 12:1–7

    Article  Google Scholar 

  • Sanz A, Fernandez-Ayala DJM, Stefanatos RKA, Jacobs HT (2010) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarup P, Sorensen P, Loeschcke V (2011) Flies selected for longevity retain a young gene expression profile. Age 33:69–80

    Article  CAS  PubMed  Google Scholar 

  • Service PM (1987) Physiological mechanisms of increased stress resistance in Drosophila melanogaster selected for postponed senescence. Physiol Zool 60:321–326

    Article  Google Scholar 

  • Service PM, Hutchinson EW, Mackinley MD, Rose MR (1985) Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 58:380–389

    Article  Google Scholar 

  • Simon AF, Liang DT, Krantz DE (2006) Differential decline in behavioral performance of Drosophila melanogaster with age. Mech Ageing Dev 127:647–651

    Article  PubMed  Google Scholar 

  • Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586

    Article  CAS  PubMed  Google Scholar 

  • Sun AY, Ingelman-Sundberg M, Neve E, Matsumoto H, Nishitani Y, Minowa Y, Fukui Y, Bailey SM, Patel VB, Cunningham CC, Zima T, Fialova L, Mikulikova L, Popov P, Malbohan I, Janebova M, Nespor K, Sun GY (2001) Ethanol and oxidative stress. Alcohol Clin Exp Res 25:237S–243S

    Article  CAS  PubMed  Google Scholar 

  • Thomson MS, Jacobson JW, Laurie CC (1991) Comparison of alcohol dehydrogenase expression in Drosophila melanogaster and D. simulans. Mol Biol Evol 8:31–48

    CAS  PubMed  Google Scholar 

  • Vallee BL, Hoch FL (1955) Zinc, a component of yeast alcohol dehydrogenase. Proc Natl Acad Sci 41:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen CJ, Loeschcke V (2007) Longevity and the stress response in Drosophila. Exp Gerontol 42:153–159

    Article  CAS  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V (2013) Longevity for free? increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased lifespan. Exp Gerontol 48:349–357

    Article  PubMed  Google Scholar 

  • Zhang L, Ran Y, Wu M, Wang L (2009) Changes of the lifespan and certain biochemical indexes on Drosophila melanogaster by ethanol exposure. Wei Sheng Yan Jiu 38:144–147

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first and second authors thank the Department of Science and Technology, Government of India, for the financial support under the INSPIRE Program. The authors thank the Chairpersons of the Department of Studies in Zoology for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepashree, S., Niveditha, S., Shivanandappa, T. et al. Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster. Biogerontology 20, 497–513 (2019). https://doi.org/10.1007/s10522-019-09812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-019-09812-7

Keywords

Navigation