Skip to main content
Log in

Effects of Melatonin on the Body Composition, Physical Performance, and Blood Erythrocyte Indexes of C57Bl/6J Mice Exposed to Continuous Illumination

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Male C57Bl/6J mice were exposed to daily 24-h illumination over 14 days and daily intragastrically received melatonin (1 mg/kg) or water (placebo). Controls were kept under standard day/night (14/10 h) conditions. Melatonin prevented the development of anemia in mice exposed to continuous illumination, which was proven by higher blood hemoglobin levels by the end of the experiment in melatonin-treated animals in comparison with the placebo group. Studies by the low-field NMR spectrometry detected lower lean body mass, total body water, and especially, fat content (by ~13%) in animals receiving placebo. Melatonin treatment led to an increase in the lean body mass and total body water on day 7 (in comparison with the placebo group) without affecting fat mass. On day 14 of continuous illumination, lean body mass increased in comparison with the corresponding parameter in the control and placebo groups. Melatonin had no effect on the physical endurance of mice exposed to continuous illumination (assessed by the grid hanging test).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arushanyan EB, Beier EV, Mastyagina OA, Mastyagin SS, Sidorenko GI. Melatonin effect on the hematological indices of healthy humans. Eksp. Klin. Farmakol. 2006;9(5):36-38. Russian.

    Google Scholar 

  2. Borodin YuI, Trufakin VA, Michurina SV, Shyrlygina AV. Structural and temporal organization of the liver, lymphatic, immune, endocrine systems under conditions of abnormal light regime and melatonin treatment. Novosibirsk, 2012. Russian.

  3. Ishchenko IY, Michurina SV. Regional lymph nodes in the liver of rats in functional pinealectomy. Bull. Exp. Biol. Med. 2014;157(5):649-653. doi: https://doi.org/10.1007/s10517-014-2636-4

    Article  CAS  PubMed  Google Scholar 

  4. Michurina SV, Ishchenko IY, Arkhipov SA, Klimontov VV, Rachkovskaya LN, Konenkov VI, Zavyalov EL. Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus. Bull. Exp. Biol. Med. 2016;162(2):269-272.

    Article  CAS  Google Scholar 

  5. Aartsma-Rus A, van Putten M. Assessing functional performance in the mdx mouse model. J. Vis. Exp. 2014;(85). doi: https://doi.org/10.3791/51303

  6. Escames G, Ozturk G, Baño-Otálora B, Pozo MJ, Madrid JA, Reiter RJ, Serrano E, Concepción M, Acuña-Castroviejo D. Exercise and melatonin in humans: reciprocal benefits. J. Pineal Res. 2012;52(1):1-11.

    Article  CAS  Google Scholar 

  7. Harris RB. Chronic and acute effects of stress on energy balance: are there appropriate animal models? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;308(4):R250-R265.

    Article  CAS  Google Scholar 

  8. Maldonado MD, Manfredi M, Ribas-Serna J, Garcia-Moreno H, Calvo JR. Melatonin administrated immediately before an intense exercise reverses oxidative stress, improves immunological defenses and lipid metabolism in football players. Physiol. Behav. 2012;105(5):1099-1103.

    Article  CAS  Google Scholar 

  9. Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stressrelated and circadian secretion and target tissue actions of glucocorticoids: impact on health. Front. Endocrinol. (Lausanne). 2017;8. ID 70. doi: https://doi.org/10.3389/fendo.2017.00070

  10. Ochoa JJ, Díaz-Castro J, Kajarabille N, García C, Guisado IM, De Teresa C, Guisado R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res. 2011;51(4):373-380.

    Article  CAS  Google Scholar 

  11. Oyama J, Murai I, Kanazawa K, Machida M. Bipedal ambulation induces experimental scoliosis in C57BL/6J mice with reduced plasma and pineal melatonin levels. J. Pineal Res. 2006;40(3):219-224.

    Article  CAS  Google Scholar 

  12. Torres-Farfan C, Serón-Ferré M, Dinet V, Korf HW. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J. Pineal Res. 2006;40(1):64-70.

    Article  CAS  Google Scholar 

  13. von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW, Stehle JH. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur. J. Neurosci. 2000;12(3):964-972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Michurina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 168, No. 7, pp. 33-38, July, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michurina, S.V., Ishchenko, I.Y., Korolev, M.A. et al. Effects of Melatonin on the Body Composition, Physical Performance, and Blood Erythrocyte Indexes of C57Bl/6J Mice Exposed to Continuous Illumination. Bull Exp Biol Med 168, 28–32 (2019). https://doi.org/10.1007/s10517-019-04638-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04638-2

Key Words

Navigation