Skip to main content

Advertisement

Log in

Whether Modern Cell Technologies Can Break Down Biological Limitations of Tissue-Specific Regeneration of the Myocardium

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

The paper reviews modern concepts of physiological and reparative regeneration of the myocardium as a highly specific and highly differentiated tissue system. Special attention was given to evaluation of the proliferative potential of cardiomyocytes, in particular, to the existence of a population of resident cardiac stem cells in the myocardium. Modern approaches to replenishment of massive cardiomyocyte loss via transplantation and transdifferentiation of adult and embryonic stem cells are discussed and the possibilities of using cell technologies for induction of tissue-specific regeneration of the myocardium are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Belenkov, F. T. Ageev, B. Yu. Mareev, and V. G. Savchenko, Kardiologiya, No. 3, 7–12 (2003).

  2. L. A. Bokeriya, Yu. I. Buziashvili, S. T. Matskeplishvili, and D. Kh. Kamardinov, Ibid., No. 9, 16–22 (2004).

  3. V. Ya. Brodskii, Byull. Eksp. Biol Med., 119, No. 5, 454–459 (1995).

    Google Scholar 

  4. A. E. Vermel’, Klin. Med., No. 1, 5–11 (2004).

  5. I. A. Grivennikov and A. A. Shkumatov, Probl. Reproduktsii, No. 3, 16–25 (2002).

  6. V. V. Egorov, A. A. Ivanov, and M. A. Pal’tsev, Molek. Med., No. 2, 3–13 (2003).

  7. E. L. Lushnikova, M. G. Klinnikova, O. P. Molodykh, and L. M. Nepomnyashchikh, Byull. Eksp. Biol. Med., 138, No.12, 684–689 (2004).

    Google Scholar 

  8. E. L. Lushnikova, L. M. Nepomnyashchikh, and M. G. Klinnikova, Ibid., 132, No.12, 685–691 (2001).

    Google Scholar 

  9. E. L. Lushnikova, L. M. Nepomnyashchikh, and V. D. Rozenberg, Morphological, Molecular, and Genetic Bases of Dilated Cardiomyopathy [in Russian], Moscow (2004).

  10. L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Vestn. Transplantol. Iskusstv. Organov, No. 4, 78–86 (2003).

  11. L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Uspechi Fiziol. Nauk., No. 3. 50–60 (2004).

  12. N. V. Naryzhnaya, E. V. Krivoshchekov, and Yu. B. Lishmanov, Vopr. Med. Khimii, 46, No.2, 127–134 (2000).

    PubMed  Google Scholar 

  13. L. M. Nepomnyashchikh, Byull. Eksp. Biol. Med., 121, No.1, 4–13 (1996).

    Google Scholar 

  14. L. M. Nepomnyashchikh, Ibid., 131, No.1, 11–21 (2001).

    Google Scholar 

  15. L. M. Nepomnyashchikh, E. L. Lushnikova, and G. I. Nepomnyashchikh, Morphometry and Stereology and Heart Hypertrophy [in Russian], Novosibirsk (1986).

  16. L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative and Plastic Cardiac Insufficiency: Morphological Bases and Molecular Mechanisms [in Russian], Moscow (2003).

  17. L. V. Polezhaev, Uspekhi Sovrem. Biol., 3, 196–211 (1994).

    Google Scholar 

  18. I. V. Potapov, M. E. Krasheninnikov, and N. A. Onishchenko, Vestn. Transplantol. Iskusstv. Organov, No. 3, 52–61 (2001).

  19. V. S. Repin, Klin. Gerontol., No. 12, 29–36 (2001).

  20. V. S. Repin, Patol. Fiziol. Eksp. Ter., No. 2, 3–7 (2001).

  21. V. S. Repin and G. T. Sukhikh, Medical Cell Biology [in Russian], Moscow (1998).

  22. V. D. Rozenberg and L. M. Nepomnyashchikh, Pathological Anatomy of Postinfarction Heart Remodeling [in Russian], Moscow (2002).

  23. V. D. Rozenberg and L. M. Nepomnyashchikh, Dilated Cardiomyopathy: General Pathology and Pathophysiology [in Russian], Moscow (2004).

  24. P. P. Rumyantsev, Cardiomyocytes in Reproduction, Differentiation, and Regeneration Processes [in Rusasian], Leningrad (1982).

  25. D. S. Sarkisov, Structural Bases of Adaptation and Compensation of Impaired Functions [in Russian], Moscow (1987).

  26. G. T. Sukhikh, V. V. Malaitsev, I. M. Bogdanova, and I. V. Dubrovina, Byull. Eksp. Biol. Med., 133, No.2, 124–131 (2002).

    Google Scholar 

  27. I. V. Uryvaeva, Ibid., 124, No.10, 364–368 (1997).

    Google Scholar 

  28. I. V. Uryvaeva, Isv. Akad. Nauk, Ser. Biol., No. 6, 728–737 (2001).

  29. I. L. Chertkov and N. N. Drize, Ter. Arkhiv, No. 7, 5–11 (2004).

  30. I. L. Chertkov and A. Ya. Fridenshtein, Cellular Bases of Hemopoiesis (Hemopoietic Stem Cells) [in Russian], Moscow (1977).

  31. Yu. L. Shevchenko, Vestn. Ros. Akad. Med. Nauk, No. 11, 6–9 (2003).

  32. J. D. Abbott, Y. Huang, D. Liu, et al., Circulation, 110, 3300–3305 (2004).

    PubMed  Google Scholar 

  33. Y. Adachi, J. Imagawa, Y. Suzuki, et al., J. Mol. Cell. Cardiol., 36, 707–710 (2004)

    Article  PubMed  Google Scholar 

  34. P. Anversa, B. Hiler, R. Ricci, et al., J. Am. Coll. Cardiol., 8, 1441–1448. (1986).

    PubMed  Google Scholar 

  35. P. Anversa and J. Kajstura, Circ. Res., 83, 1–14 (1998).

    PubMed  Google Scholar 

  36. P. Anversa, B. Nadal-Ginard, Nature, 415, 240–243 (2002).

    Article  PubMed  Google Scholar 

  37. I. M. Barbash, P. Chouraqui, J. Baron, et al., Circulation, 108, 863–868 (2003).

    Article  PubMed  Google Scholar 

  38. A. Behfar, L. V. Zingman, D. M. Hodgson, et al., FASEB J., 16, 1558–1566 (2002).

    Article  PubMed  Google Scholar 

  39. A. P. Beltrami, L. Barlucchi, D. Torella, et al., Cell, 114, 763–776 (2003).

    Article  PubMed  Google Scholar 

  40. A. P. Beltrami, K. Urbanek, J. Kajsrura, et al., N. Engl. J. Med., 344, 1750–1757 (2001).

    Article  PubMed  Google Scholar 

  41. D. W. Benson, G. M. Silberbach, A. Kavanaugh-McHugh, et al., J. Clin. Invest., 104, 1567–1573 (1999).

    PubMed  Google Scholar 

  42. D. M. Bodine, N. E. Seidel, M. S. Gale, et al., Blood, 84, 1482–1491 (1994)

    PubMed  Google Scholar 

  43. T. Brazelton, F. M. Rossi, G. I. Keshet, and H. M. Blau, Science, 290, 1775–1779 (2000).

    Article  PubMed  Google Scholar 

  44. W. Brenner, A. Aicher, T. Eckey, et al., J. Nucl. Med., 45, 512–518 (2004).

    PubMed  Google Scholar 

  45. C. Chimenti, J. Kajstura, D. Torella, et al., Circ. Res., 93, 604–613 (2003).

    Article  PubMed  Google Scholar 

  46. M. A. Eglitis and E. Mezey, Proc. Natl. Acad. Sci. USA, 94, 4080–4085 (1997).

    Article  PubMed  Google Scholar 

  47. G. Ferrari, G. Cusella-De Angelis, M. Coletta, et al., Science, 279, 1528–1530 (1998).

    Article  PubMed  Google Scholar 

  48. G. D. Fischbach and R. L. Fischbach, J. Clin. Invest., 114, 1364–1370 (2004).

    Article  PubMed  Google Scholar 

  49. N. G. Frangogiannis, J. L. Perrard, L. H. Mendoza, et al., Circulation, 98, 687–698 (1998).

    PubMed  Google Scholar 

  50. S. Fukuhara, S. Tomita, S. Yamashiro, et al., J. Thorac. Cardiovasc. Surg., 125, 1470–1480 (2003).

    Article  PubMed  Google Scholar 

  51. A. M. Gewirtz, D. L. Sokol, and M. Z. Ratajczak, Blood, 92, 712–736 (1998).

    PubMed  Google Scholar 

  52. C. Grepin, L. Robitaille, T. Antakly, and M. Nemer, Mol. Cell. Biol., 15, 4095–4102 (1995).

    PubMed  Google Scholar 

  53. J.-Q. He, Y. Ma, Y. Lee, et al., Circ. Res., 93, 32–39 (2003).

    Article  PubMed  Google Scholar 

  54. E. D. Israels and L. G. Israels, Stem Cells, 19, 88–91 (2001).

    Article  PubMed  Google Scholar 

  55. K. A. Jackson, S. M. Majka, H. Wang, et al., J. Clin Invest., 107, 1395–1402 (2001).

    PubMed  Google Scholar 

  56. M. Jankowski, B. Danalache, D. Wang, et al., Proc. Natl. Acad. Sci. USA, 101, 13 074–13 079 (2004).

    Article  Google Scholar 

  57. J. Kajstura, A. Leri, N. Finato, et al., Ibid., 95, 8801–8805 (1998).

    Article  PubMed  Google Scholar 

  58. J. Kajstura, B. Pertoldi, A. Leri, et al., Am. J. Pathol., 156, 813–819 (2000).

    PubMed  Google Scholar 

  59. M. Kobling and Z. Estrov, N. Engl. J. Med., 349, 570–582 (2003).

    Article  PubMed  Google Scholar 

  60. T. Kofidis, J. L. de Bruin, T. Yamane, et al., Stem Cells, 22, 1239–1245 (2004).

    Article  PubMed  Google Scholar 

  61. R. Kronenwett, S. Martin, and R. Haas, Ibid., 18, 320–330 (2000).

    Article  PubMed  Google Scholar 

  62. T. Kunisada, H. Yoshida, H. Yamazaki, et al., Development, 125, 2915–2923 (1998).

    PubMed  Google Scholar 

  63. M. A. Laflamme, D. Myerson, J. E. Saffitz, C. E. Murry, Circ. Res., 90, 634–640 (2002).

    Article  PubMed  Google Scholar 

  64. X. Lagasse, H. Connors, M. Al Dhalimy, et al., Nat. Med., 6, 1229–1234 (2000).

    Article  PubMed  Google Scholar 

  65. M. S. Lee and R. R. Makkar, Ann. Intern. Med., 140, 729–737 (2004).

    PubMed  Google Scholar 

  66. A. Leri, L. Barlucchi, F. Limana, et al., Proc. Natl. Acad. Sci. USA, 98, 8626–8631 (2001).

    Article  PubMed  Google Scholar 

  67. J. L. Liesveld, K. Rosell, and N. Panoskaltsis, et al., J. Hematother. Stem Cell Res., 10, 643–655 (2001).

    Article  PubMed  Google Scholar 

  68. K. Liu, M. M. Schoonmaker, B. L. Levine, et al., Proc. Natl. Acad. Sci. USA, 96, 5147–5152 (1999).

    Article  PubMed  Google Scholar 

  69. S. Makino, K. Fukuda, S. Miyoshi, et al., J. Clin. Invest., 103, 697–705 (1999).

    PubMed  Google Scholar 

  70. N. Malouf, W.B. Coleman, and J. Grisham, et al., Am. J. Pathol., 158, 1929–1935 (2001).

    PubMed  Google Scholar 

  71. V. A. Maltsev, J. Rohwedel, J. Hescheler, and A. M. Wobus, Mech. Dev., 44, 41–50 (1993).

    Article  PubMed  Google Scholar 

  72. L. Martin-Rivera, E. Herrera, J. P. Albar, M. A. Blasco, Proc. Natl. Acad. Sci. USA, 95, 10 471–10 476 (1998).

    Article  Google Scholar 

  73. Y. Matsui, K. M. Zsebo, and B. L. Hogan, Nature, 347, 667–669 (1990).

    Article  PubMed  Google Scholar 

  74. K. Matsuura, T. Nagai, N. Nishigaki, et al., J. Biol. Chem., 279, 11 384–11 391 (2004).

    Article  Google Scholar 

  75. E. Messina, L. De Angelis, G. Frati, et al., Circ. Res., 95, 911–921 (2004).

    Article  PubMed  Google Scholar 

  76. E. Mezey, K. J. Chandrosss, G. Harta, et al., Science, 290, 1779–1782 (2000).

    Article  PubMed  Google Scholar 

  77. G. K. Michalopoulos and M. C. de Frances, Ibid., 276, 60–66 (1997).

    Article  PubMed  Google Scholar 

  78. S. Miyagawa, Y. Sawa, S. Taketani, et al., Circulation, 105, 2556–2561 (2002).

    Article  PubMed  Google Scholar 

  79. S. J. Morrison, N. M. Shah, and D. J. Anderson, Cell, 88, 286–298 (1997)

    Article  Google Scholar 

  80. J. S. Odorico, D. S. Kaufman, J. A. Thomson, Stem Cells, 19, 193–204 (2001).

    Article  PubMed  Google Scholar 

  81. S. Oparil, S.P. Bishop, and F.J. Clubb, Hypertension, 6,Suppl. III, III-38-III-43 (1984).

  82. D. Orlic, J. M. Hill, and A. E. Arai, Circ. Res., 91, 1092–1102 (2002).

    Article  PubMed  Google Scholar 

  83. D. Orlic, J. Kajstura, S. Chimenti, et al., Nature, 410, 701–705 (2001).

    Article  PubMed  Google Scholar 

  84. D. Orlic, J. Kajstura, S. Chimenti, et al., Ann. N.Y. Acad. Sci., 938, 221–230 (2001).

    PubMed  Google Scholar 

  85. D. Orlic, J. Kajstura, S. Chimenti, et al., Proc. Natl. Acad. Sci. USA, 98, 10 344–10 349 (2001).

    Article  Google Scholar 

  86. H. N. Pak, M. Qayyum, D. T. Kim, et al., J. Cardiovasc. Electrophysiol., 14, 841–848 (2003).

    Article  PubMed  Google Scholar 

  87. T. Papayannopoulou and B., Nakamoto Proc. Natl. Acad. Sci. USA, 90, 9374–9378 (1993).

    PubMed  Google Scholar 

  88. V. Patella, I. Marino, E. Arbustini, et al., Circulation, 97, 971–978 (1998).

    PubMed  Google Scholar 

  89. D. G. Penney, M. S. Baylerian, J. E. Thill, et al., Am. J. Physiol., 244, H289–H297 (1983).

    PubMed  Google Scholar 

  90. E. C. Perin, H. F. R. Dohmann, R. Borojevic, et al., Circulation, 107, 2294–2302 (2003).

    Article  PubMed  Google Scholar 

  91. B. E. Petersen, W. C. Bowen, K. D. Patrene, et al., Science, 284, 1168–1170 (1999).

    Article  PubMed  Google Scholar 

  92. R.O. Petersen and R. Baserga, Exp. Cell. Res., 40, 340–352 (1965).

    Article  PubMed  Google Scholar 

  93. M. F. Pittenger and B. J. Martin, Circ. Res., 95, 9–20 (2004).

    Article  PubMed  Google Scholar 

  94. F. Prosper, D. Stroncek, J.B. McCarthy, et al., J. Clin. Invest., 101, 2456–2467 (1998).

    PubMed  Google Scholar 

  95. F. Quaini, K. Urbanek, A.P. Beltrami, et al., N. Engl. J. Med., 346, 5–15 (2002).

    Article  PubMed  Google Scholar 

  96. S. Rangappa, J. W. C. Entwistle, A. S. Wechsler, and Y. Kresh, J. Thorac. Cardiovasc. Surg., 126, 124–132 (2003).

    Article  PubMed  Google Scholar 

  97. T. Saito, J.-Q. Kuang, C. C. H. Lin, and R. C.-J. Chiu, Ibid, 114–122.

  98. R. Sasaki, Y. Watanabe, T. Morishita, and S. Yamagata, Tohoku J. Exp. Med., 95, 177–184 (1968).

    PubMed  Google Scholar 

  99. M. Sata, A. Saiura, A. Kunisato, et al., Nat. Med., 8, 403–409 (2002).

    Article  PubMed  Google Scholar 

  100. R. E. Schwartz, M. Reyes, L. Koodie, et al., J. Clin. Invest., 101, 1291–1302 (2002).

    Article  Google Scholar 

  101. J. G. Shake, P. J. Gruber, W. A. Baumgartner, et al., Ann. Thorac. Surg., 73, 1919–1925 (2002).

    Article  PubMed  Google Scholar 

  102. S. Shintani, T. Murohara, H. Ikeda, et al., Circulation, 103, 2776–2779 (2001).

    PubMed  Google Scholar 

  103. B. E. Strauer, M. Brehm, T. Zeus, et al., Ibid., 106, 1913–1918 (2002).

    Article  PubMed  Google Scholar 

  104. B. Swynghedauw, Physiol. Rev., 79, 215–262 (1999).

    PubMed  Google Scholar 

  105. T. Takahashi, B. Lord, P. C. Schulze, et al., Circulation, 107, 1912–1916 (2003).

    Article  PubMed  Google Scholar 

  106. M. Teyssier-Le Discorde, S. Prost, E. Nandrot, and M. Kirszanbaum, Br. J. Haematol., 107, 247–253 (1999).

    Article  PubMed  Google Scholar 

  107. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., Science, 282, 1145–1147 (1998).

    PubMed  Google Scholar 

  108. C. Toma, M. F. Pittenger, K. S. Cahill, et al., Circulation, 105, 93–98 (2002).

    Article  PubMed  Google Scholar 

  109. K. Urbanek, F. Quaini, G. Tasca, et al., Proc. Natl. Acad. Sci. USA, 100, 10 440–10 445 (2003).

    Article  Google Scholar 

  110. T. B. van Dijk, E. van den Akker, M. Parren-van Amelsvoort, et al., Blood, 96, 3406–3413 (2000).

    PubMed  Google Scholar 

  111. C. Ventura and M. Maioli, Circ. Res., 87, 189–194 (2000).

    PubMed  Google Scholar 

  112. C. M. Verfaillie, R. Hurley, R. Bhatia, et al., Crit. Rev. Oncol. Hematol., 16, 201–224 (1994).

    PubMed  Google Scholar 

  113. I. L. Weissman, Cell, 100, 157–168 (2000).

    Article  PubMed  Google Scholar 

  114. A. M. Wobus, G. Kaomei, J. Shan, et al., J. Mol. Cell. Cardiol., 29, 1525–1539 (1997).

    Article  PubMed  Google Scholar 

  115. C. Xu, S. Police, N. Rao, M. K. Carpenter, Circ. Res., 91, 501–508 (2002).

    Article  PubMed  Google Scholar 

  116. M. Xu, M. Wani, Y.-S. Dai, et al., Circulation, 110, 2658–2665 (2004).

    Article  PubMed  Google Scholar 

  117. W. Xu, X. Zhang, H. Qian, et al., Exp. Biol. Med., 229, 623–631 (2004).

    Google Scholar 

  118. Y.-S. Yoon, J.-S. Park, T. Tkebuchava, et al., Circulation, 109, 3154–3157 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nepomnyashchikh.

Additional information

__________

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 63–74, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepomnyashchikh, L.M., Lushnikova, E.L. & Goldshtein, D. Whether Modern Cell Technologies Can Break Down Biological Limitations of Tissue-Specific Regeneration of the Myocardium. Bull Exp Biol Med 139, 481–490 (2005). https://doi.org/10.1007/s10517-005-0328-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-005-0328-9

Key Words

Navigation